Boucek, R. E., Heithaus, M. R., Santos, R., Stevens, P. & Rehage, J. S. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study. Glob. Chang Biol. 23, 4045–4057 (2017).
Rossi, S. & Bramanti, L. Perspectives on the Marine Animal Forests of the World. Perspectives on the Marine Animal Forests of the World (Springer, 2021). https://doi.org/10.1007/978-3-030-57054-5.
Beazley, L. et al. Climate change winner in the deep sea? Predicting the impacts of climate change on the distribution of the glass sponge Vazella pourtalesii. Mar. Ecol. Prog. Ser. 657, 1–23 (2021).
Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).
Cau, A., Mercier, A., Moccia, D. & Auster, P. J. The nursery role of marine animal forests. In Perspectives on the Marine Animal Forests of the World (eds Rossi, S. & Bramanti, L.) 309–331 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-57054-5_10.
Lefcheck, J. S. et al. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. https://doi.org/10.1111/conl.12645 (2019).
Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).
Kenchington, E., Power, D. & Koen-Alonso, M. Associations of demersal fish with sponge grounds on the continental slopes of the northwest Atlantic. Mar. Ecol. Prog. Ser. 477, 217–230 (2013).
Henry, L. A. & Roberts, J. M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res. Oceanogr. Res. Pap. 54, 654–672 (2007).
Ragnarsson, S. Á. & Burgos, J. M. Associations between fish and cold-water coral habitats on the Icelandic shelf. Mar. Environ. Res. 136, 8–15 (2018).
Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. I Oceanogr. Res. Pap. 153, 103137 (2019).
Bosley, K. L., Bosley, K. M., Keller, A. A. & Whitmire, C. E. Relating groundfish diversity and biomass to deep-sea corals and sponges using trawl survey catch data. Mar. Ecol. Prog. Ser. 646, 127–143 (2020).
Grinyó, J. et al. Occurrence and behavioral rhythms of the endangered Acadian redfish (Sebastes fasciatus) in the Sambro Bank (Scotian Shelf). Front. Mar. Sci. 10, 1158283 (2024).
Foley, N. S., van Rensburg, T. M. & Armstrong, C. W. The ecological and economic value of cold-water coral ecosystems. Ocean Coast Manag. 53, 313–326 (2010).
Ona, E. Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J. Mar. Sci. 53(4), 677–690. https://doi.org/10.1006/jmsc.1996.0087 (1996).
Mello, L. G. S. & Rose, G. A. Seasonal growth of Atlantic cod: Effects of temperature, feeding and reproduction. J. Fish Biol. 67, 149–170 (2005).
Auster, P. J. A conceptual model of the impacts of fishing gear on the integrity of fish habitats. Conserv. Biol. 12, 1198–1203 (1998).
Andaloro, F., Ferraro, M., Mostarda, E., Romeo, T. & Consoli, P. Assessing the suitability of a remotely operated vehicle (ROV) to study the fish community associated with offshore gas platforms in the Ionian Sea: A comparative analysis with underwater visual censuses (UVCs). Helgol. Mar. Res. 67, 241–250 (2013).
Milligan, R. J. et al. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic?. J. Anim. Ecol. 89, 1593–1603 (2020).
Thrush, S. F. & Dayton, P. K. Disturbance to marine benthic habitats by trawling and dredging: Implications for marine biodiversity. Annu. Rev. Ecol. Syst. 33, 449–473 (2002).
Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).
De Robertis, A., Wilson De Robertis, C. D., De Robertis, A. & Wilson, C. D. Silent ships sometimes do encounter more fish. 2. Concurrent echosounder observations from a free-drifting buoy and vessels. ICES J. Mar. Sci. 67, 996–1003 (2010).
Lin, M. & Yang, C. Ocean observation technologies: A review. Chin. J. Mech. Eng. (English Edition) 33, 1–18 (2020).
Aguzzi, J. et al. New technologies for monitoring and upscaling marine ecosystem restoration in deep-sea environments. Engineering 34, 195–211 (2024).
Hanz, U. et al. Seasonal variability in near-bed environmental conditions in the Vazella pourtalesii glass sponge grounds of the Scotian shelf. Front. Mar. Sci. 7, 597682 (2021).
Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).
Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns. 154–158. https://doi.org/10.1007/978-3-319-21012-4 (2017).
De Clippele, L. H. et al. Mapping cold-water coral biomass: An approach to derive ecosystem functions. Coral Reefs 40, 215–231 (2021).
Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).
Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.604879 (2021).
Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. https://doi.org/10.1038/s41598-020-74670-0 (2020).
Bell, J. J. The functional roles of marine sponges. Estuar Coast Shelf Sci. 79, 341–353 (2008).
Beazley, L. I., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).
Kazanidis, G., Henry, L. A., Roberts, J. M. & Witte, U. F. M. Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs 35, 193–208 (2016).
Hawkes, N. J. Epibenthic Megafauna Associated with Sponge Grounds Formed by the Unique Glass Sponge Vazella Pourtalesii in Emerald Basin, Nova Scotia, Canada, MSc Thesis (2017).
Busch, K. et al. Microbial diversity of the glass sponge Vazella pourtalesii in response to anthropogenic activities. Conserv. Genet. 21, 1001–1010 (2020).
Bell, J. J. & Barnes, D. K. A. Sponge morphological diversity: A qualitative predictor of species diversity?. Aquat. Conserv. 11, 109–121 (2001).
Fuller, S. D., Murillo Perez, F. J., Wareham, V. & Kenchington, E. SC WG On the ecosystem approach to fisheries management—May 2008 vulnerable marine ecosystems dominated by deep-water corals and sponges in the NAFO convention area. Northw. Atlant. Fish. Org. 08/22, N5524 (2008).
Hawkes, N. et al. Glass sponge grounds on the Scotian Shelf and their associated biodiversity. Mar. Ecol. Prog. Ser. 614, 91–109 (2019).
Coad, B. W. Annotated list of the arctic marine fishes of Canada. Can. MS Rep. Fish. Aquat. Sci. 2674, 112 (2004).
Bertolino, M. et al. Sponges as feeding resource for the white seabream Diplodus sargus (Linnaeus, 1758) from the Mediterranean Sea. Eur. Zool. J. 91, 1192–1198 (2024).
Beazley, L. et al. Predicted distribution of the glass sponge Vazella pourtalesii on the Scotian Shelf and its persistence in the face of climatic variability. PLoS ONE 13, e0205505 (2018).
Kenchington, E. et al. Delineating coral and sponge concentrations in the biogeographic regions of the east coast of Canada using spatial analyses. DFO Can. Sci. Advis. Sec. Res. Doc. 41, 202 (2010).
Kenchington, E. et al. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators. PLoS ONE 9, e109365 (2014).
Fuller, S. D. Diversity of Marine Sponges in the Northwest Atlantic (PhD Thesis). https://dalspace.library.dal.ca/handle/10222/13454 (2011).
DFO. Occurrence, Sensitivity to Fishing, and Ecological Function of Corals, Sponges and Hydrothermal Vents in Canadian Waters (2010).
De Clippele, L. H. et al. Cruise report in support of maritimes region research project ‘use of passive acoustics to quantify fish biodiversity and habitat use’: Ocean Observation systems in the gully MPA and Scotian Shelf 2022. Can. Manuscr. Rep. Fish. Aquat. Sci. 3260, 231 (2023).
Garrison, L. & Link, J. Dietary guild structure of the fish community in the Northeast United States continental shelf ecosystem. Mar. Ecol. Prog. Ser. 202, 231–240 (2000).
Auster, P. J. & Link, J. S. Compensation and recovery of feeding guilds in a northwest Atlantic shelf fish community. Mar. Ecol. Prog. Ser. 382, 163–172 (2009).
DFO. Maritimes research vessel survey trends on the Scotian Shelf and Bay of Fundy for 2022 (2023).
DFO. Maritimes research vessel survey trends on the Scotian Shelf and Bay of Fundy for 2023 (2024).
Dwyer, K. S. Proceedings for the Zonal Peer Review Pre-COSEWIC Assessment for American Plaice : Meeting Dates, October 22–24, 2019: Location, St. John’s, NL. (Canadian Science Advisory Secretariat (CSAS), 2022).
Bowering, W. R. & Brodie, W. B. Distribution of commercial flatfishes in the Newfoundland-Labrador region of the Canadian northwest Atlantic and changes in certain biological parameters since exploitation. Neth. J. Sea Res. 27, 407–422 (1991).
Pitt, R. K. Age and growth of American plaice (Hippoglossoides platessoides) in the Newfoundland area of the Northwest Atlantic. J. Fish. Res. BD. Canada 5, 1077–1099 (1967).
Brodziak, J. K. T., Holmes, E. M., Sosebee, K. A. & Mayo, R. K. Assessment of the silver hake resource in the northwest Atlantic in 2000. Northeast Fish. Sci. Center Ref. Docum. 01–03, 134 (2001).
Walsh, S. J. Life history traits and spawning characteristics in populations of long rough dab (American Plaice) Hippoglossoides platessoides (Fabricius) in the North Atlantic. Neth. J. Sea Res. 32, 241–254 (1994).
Zhu, L. Investigating Diet, Distribution, and Growth of Silver Hake (Merluccius Bilinearis) in Their Northernmost Extent in the Gulf of St. Lawrence. Master of Science (2020).
Hannah, C. G., Shore, J. A., Loder, J. W. & Naimie, C. E. Seasonal circulation on the western and central Scotian shelf. J. Phys. Oceanogr. 31, 591 (2001).
Morgan, M. J. The relationship between fish condition and the probability of being mature in American plaice (Hippoglossoides platessoides). ICES J. Mar. Sci. 61, 64–70 (2004).
Beamish, F. Vertical migration by demersal fish in the northwest Atlantic. J. Fish. Res. Canada 23, 109–139 (1965).
Steele, D. H. The redfish (Sebastes Marinus) in the Western Gulf of St. Lawrence. J. Fish. Res. Canada 14, 899–924 (1957).
Kenchington, T. J. Vertical distribution and movements of larval redfishes (Sebastes spp.) in the Southern Gulf of St. Lawrence. J. Northw. Atl. Fish. Sci 11, 43–49 (1991).
Gauthier, S. & Rose, G. A. Acoustic observation of diel vertical migration and shoaling behaviour in Atlantic redfishes. J. Fish. Biol. 61, 1135–1153 (2002).
Grinyó, J. et al. Occurrence and behavioral rhythms of the endangered Acadian redfish (Sebastes fasciatus) in the Sambro Bank (Scotian Shelf). Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1158283 (2023).
Fahay, M. P. & Able, K. W. White hake, Urophycis tenuis, in the Gulf of Maine: Spawning seasonality, habitat use, and growth in young of the year and relationships to the Scotian Shelf population. Can. J. Zool. 67, 1715–1724 (1988).
Auster, P. J., Lindholm, J. & Valentine, P. C. Variation in habitat use by juvenile Acadian redfish, Sebastes fasciatus. Environ. Biol. Fish. 68, 381–389 (2003).
Rikhter, V. A., Sigaev, I. K., Vinogradov, V. A. & Isakov, V. I. Silver hake of scotian shelf: Fishery & environmental conditions & distribution & and biology and abundance dynamics. J. Northw. Atl. Fish. Sci 29, 51–92 (2001).
Bowman, R. E., Bowman, E. W., Rowman, K. E., Bowman, E. W. & Bowman, K. E. Diurnal variation in the feeding intensity and catchability of silver hake (Merluccius bilinearis). Can. J. Fish. Aquat. Sci. 37, 1565–1572 (1980).
Ouellette-Plante, J., Chabot, D., Nozères, C. & Bourdages, H. Diets of DEMERSAL FISH from the CCGS Teleost Ecosystemic Surveys in the Estuary and Northern Gulf of St. Lawrence, August 2015–2017 (2015).
Brown-Vuillemin, S., Tremblay, R., Chabot, D., Sirois, P. & Robert, D. Feeding ecology of redfish (Sebastes sp.) inferred from the integrated use of fatty acid profiles as complementary dietary tracers to stomach content analysis. J. Fish Biol. 102, 1049–1066 (2023).
Savenkoff, C., Morin, B., Chabot, D. & Castonguay, M. Main Prey and Predators of Redfish (Sebastes Spp.) in the Northern Gulf of St. Lawrence during the Mid-1980s, Mid-1990s, and Early 2000s Canadian Technical Report of Fisheries and Aquatic Sciences 2648 (2006).
Ouellette-Plante, J., Chabot, D., Nozères, C. & Bourdages, H. Diets of Demersal Fish from the CCGS Teleost Ecosystemic Surveys in the Estuary and Northern Gulf of St. Lawrence, August 2015–2017. https://www.researchgate.net/publication/358793388 (2020).
Brown-Vuillemin, S. et al. Diet composition of redfish (Sebastes sp.) during periods of population collapse and massive resurgence in the Gulf of St. Lawrence. Front. Mar. Sci. 9, 963039 (2022).
Lock, M. C. & Packer, D. B. Silver Hake, Merluccius bilinearis, Life History and Habitat Characteristics. NOAA Technical Memorandum NMFS-NE-186 (2004).
Maldonado, M., Navarro, L., Grasa, A., Gonzalez, A. & Vaquerizo, I. Silicon uptake by sponges: A twist to understanding nutrient cycling on continental margins. Sci. Rep. 1, 1–30 (2011).
Coppock, A. G., Kingsford, M. J., Battershill, C. N. & Jones, G. P. Significance of fish–sponge interactions in coral reef ecosystems. Coral Reefs 41, 1285–1308 (2022).
Pérez-Rodríguez, A., Howell, D., Casas, M., Saborido-Rey, F. & Ávila-De Melo, A. Dynamic of the Flemish cap commercial stocks: Use of a gadget multispecies model to determine the relevance and synergies among predation, recruitment, and fishing. Can. J. Fish. Aquat. Sci. 74, 582–597 (2017).
Linke, S. et al. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Front. Ecol. Environ. 16, 231–238 (2018).
McAllister, D. E. Sand-hiding behavior in young white hake. Can. Field-Natur. 74, 177–178 (1960).
Auster, P., Richard, J. M. & LaRosa, S. C. Patterns of microhabitat utilization by mobile megafauna on the southern New England (USA) continental shelf and slope. Mar. Ecol. Prog. Ser. 127, 77–85 (1995).
Wurz, E. et al. The hexactinellid deep-water sponge Vazella pourtalesii (Schmidt, 1870) (Rossellidae) copes with temporarily elevated concentrations of suspended natural sediment. Front. Mar. Sci. 8, 611539 (2021).
Guénette, S. & Clark, D. Canadian Science Advisory Secretariat (CSAS) Information in Support of Recovery Potential Assessment for White Hake (Urophycis Tenuis) from the Scotian Shelf (NAFO Divs. 4VWX5z). http://www.dfo-mpo.gc.ca/csas-sccs/ (2016).
Arkema, K. K. & Samhouri, J. F. Linking ecosystem health and services to inform marine ecosystem-based management. Am. Fish. Soc. Symp. 79, 9–25 (2012).
Arkema, K. K., Abramson, S. C. & Dewsbury, B. M. Marine ecosystem-based management: From characterization to implementation. Front. Ecol. Environ. 4, 525–532 (2006).
Cai, W. et al. Biofouling sponges as natural eDNA samplers for marine vertebrate biodiversity monitoring. Sci. Total Environ. 946, 174148 (2024).
Pawlowski, J., Bonin, A., Boyer, F., Cordier, T. & Taberlet, P. Environmental DNA for biomonitoring. Mol. Ecol. 30(13), 2931–2936. https://doi.org/10.1111/mec.16023 (2021).
Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samplers. Curr. Biol. 29, R401–R402 (2019).
De Clippele, L. H. & Risch, D. measuring sound at a cold-water coral reef to assess the impact of COVID-19 on noise pollution. Front. Mar. Sci. 8, 674702 (2021).
Havlik, M. N., Predragovic, M. & Duarte, C. M. State of play in marine soundscape assessments. Front. Mar. Sci. 9, 919418 (2022).
Hendricks, A. et al. Compact and automated eDNA sampler for in situ monitoring of marine environments. Sci. Rep. 13, 5210 (2023).
Mouy, X. et al. Automatic detection of unidentified fish sounds: A comparison of traditional machine learning with deep learning. Front. Remote Sens. https://doi.org/10.3389/frsen.2024.1439995 (2024).
Clark, H. P. et al. New interactive machine learning tool for marine image analysis. R. Soc. Open Sci. https://doi.org/10.1098/rsos.231678 (2024).
Doherty, P. & Horsman, T. Ecologically and biologically significant areas of the Scotian shelf and environs: A compilation of scientific expert opinion. Can. Tech. Rep. Fish. Aquat. Sci 2774, 57 (2007).
Kenchington, E., Lirette, C. & De Clippele, L. H. Cruise Report in support of maritimes region research project: Use of passive acoustics to quantify fish biodiversity and habitat use. Can. Manuscr. Rep. Fish. Aquat. Sci. 3231, 231 (2021).
De Clippele, L. H. et al. Cruise report in support of Maritimes region research project ‘use of passive acoustics to quantify fish biodiversity and habitat use’: Ocean Observation systems in the Gully MPA and Scotian shelf 2023. Can. Manuscr. Rep. Fish. Aquat. Sci. 3288, 231 (2024).
Whoriskey, K. et al. Current and emerging statistical techniques for aquatic telemetry data: A guide to analysing spatially discrete animal detections. Methods Ecol. Evol. 10, 935–948 (2019).
Nozères, C. et al. Image annotations for biodiversity with benthic landers in the Gully MPA and Scotian Shelf from 2021–2023. Can. Manuscr. Rep. Fish. Aquat. Sci. 3290, 99 (2024).
Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0—Browsing and annotating large marine image collections. Front. Mar. Sci. 4, 83 (2017).
Howell, K., Bridges, A., Davies, J., Parimbelli, A. & Piechaud, N. An Ecologist’s guide to BIIGLE. Univ. Plymouth https://doi.org/10.5281/zenodo.7728927 (2023).
Alston, J. M. et al. Mitigating pseudoreplication and bias in resource selection functions with autocorrelation-informed weighting. Methods Ecol. Evol. 14, 643–654 (2023).
Iverson, S. J. et al. The ocean tracking network: Advancing frontiers in aquatic science and management. Can. J. Fish. Aquat. Sci. 76, 1041–1051 (2019).
de Froe, E. et al. Hydrography and food distribution during a tidal cycle above a cold-water coral mound. Deep Sea Res. 1 Oceanogr. Res. Pap. 189, 103854 (2022).
O’Reilly, J. E. & Werdell, P. J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 229, 32–47 (2019).
Kenchington, E. et al. Canadian Science Advisory Secretariat (CSAS) Delineation of Coral and Sponge Significant Benthic Areas in Eastern Canada Using Kernel Density Analyses and Species Distribution Models. http://www.dfo-mpo.gc.ca/csas-sccs/ (2016).
Beazley, L. et al. Predicted distribution of the glass sponge Vazella pourtalesii on the Scotian Shelf and its persistence in the face of climatic variability. PLoS One 13, e0205505 (2018).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Kuhn, M. et al. Package ‘Caret’: Classification and Regression Training (2023).
Akselrud, A. C. I. Random forest regression models in ecology: Accounting for messy biological data and producing predictions with uncertainty. Fish. Res. 280, 107161 (2024).
Dokter, A. M. et al. bioRad: Biological analysis and visualization of weather radar data. Ecography 42, 852–860 (2019).
Carslaw, D. & Ropkins, K. Package ‘Openair’. http://www.openair-project.org/ (2014).
Navarro, D. Package ‘Lsr’ (2022).