Fish use of deep-sea sponge habitats evidenced by long-term high-resolution monitoring


  • Boucek, R. E., Heithaus, M. R., Santos, R., Stevens, P. & Rehage, J. S. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study. Glob. Chang Biol. 23, 4045–4057 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Rossi, S. & Bramanti, L. Perspectives on the Marine Animal Forests of the World. Perspectives on the Marine Animal Forests of the World (Springer, 2021). https://doi.org/10.1007/978-3-030-57054-5.

    Book 

    Google Scholar
     

  • Beazley, L. et al. Climate change winner in the deep sea? Predicting the impacts of climate change on the distribution of the glass sponge Vazella pourtalesii. Mar. Ecol. Prog. Ser. 657, 1–23 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).

    Article 

    Google Scholar
     

  • Cau, A., Mercier, A., Moccia, D. & Auster, P. J. The nursery role of marine animal forests. In Perspectives on the Marine Animal Forests of the World (eds Rossi, S. & Bramanti, L.) 309–331 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-57054-5_10.

    Chapter 

    Google Scholar
     

  • Lefcheck, J. S. et al. Are coastal habitats important nurseries? A meta-analysis. Conserv. Lett. https://doi.org/10.1111/conl.12645 (2019).

    Article 

    Google Scholar
     

  • Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kenchington, E., Power, D. & Koen-Alonso, M. Associations of demersal fish with sponge grounds on the continental slopes of the northwest Atlantic. Mar. Ecol. Prog. Ser. 477, 217–230 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Henry, L. A. & Roberts, J. M. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res. Oceanogr. Res. Pap. 54, 654–672 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ragnarsson, S. Á. & Burgos, J. M. Associations between fish and cold-water coral habitats on the Icelandic shelf. Mar. Environ. Res. 136, 8–15 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. I Oceanogr. Res. Pap. 153, 103137 (2019).

    Article 

    Google Scholar
     

  • Bosley, K. L., Bosley, K. M., Keller, A. A. & Whitmire, C. E. Relating groundfish diversity and biomass to deep-sea corals and sponges using trawl survey catch data. Mar. Ecol. Prog. Ser. 646, 127–143 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grinyó, J. et al. Occurrence and behavioral rhythms of the endangered Acadian redfish (Sebastes fasciatus) in the Sambro Bank (Scotian Shelf). Front. Mar. Sci. 10, 1158283 (2024).

    Article 

    Google Scholar
     

  • Foley, N. S., van Rensburg, T. M. & Armstrong, C. W. The ecological and economic value of cold-water coral ecosystems. Ocean Coast Manag. 53, 313–326 (2010).

    Article 

    Google Scholar
     

  • Ona, E. Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J. Mar. Sci. 53(4), 677–690. https://doi.org/10.1006/jmsc.1996.0087 (1996).

    Article 

    Google Scholar
     

  • Mello, L. G. S. & Rose, G. A. Seasonal growth of Atlantic cod: Effects of temperature, feeding and reproduction. J. Fish Biol. 67, 149–170 (2005).

    Article 

    Google Scholar
     

  • Auster, P. J. A conceptual model of the impacts of fishing gear on the integrity of fish habitats. Conserv. Biol. 12, 1198–1203 (1998).

    Article 

    Google Scholar
     

  • Andaloro, F., Ferraro, M., Mostarda, E., Romeo, T. & Consoli, P. Assessing the suitability of a remotely operated vehicle (ROV) to study the fish community associated with offshore gas platforms in the Ionian Sea: A comparative analysis with underwater visual censuses (UVCs). Helgol. Mar. Res. 67, 241–250 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Milligan, R. J. et al. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic?. J. Anim. Ecol. 89, 1593–1603 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Thrush, S. F. & Dayton, P. K. Disturbance to marine benthic habitats by trawling and dredging: Implications for marine biodiversity. Annu. Rev. Ecol. Syst. 33, 449–473 (2002).

    Article 

    Google Scholar
     

  • Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).

    Article 

    Google Scholar
     

  • De Robertis, A., Wilson De Robertis, C. D., De Robertis, A. & Wilson, C. D. Silent ships sometimes do encounter more fish. 2. Concurrent echosounder observations from a free-drifting buoy and vessels. ICES J. Mar. Sci. 67, 996–1003 (2010).

    Article 

    Google Scholar
     

  • Lin, M. & Yang, C. Ocean observation technologies: A review. Chin. J. Mech. Eng. (English Edition) 33, 1–18 (2020).

    Article 

    Google Scholar
     

  • Aguzzi, J. et al. New technologies for monitoring and upscaling marine ecosystem restoration in deep-sea environments. Engineering 34, 195–211 (2024).

    Article 

    Google Scholar
     

  • Hanz, U. et al. Seasonal variability in near-bed environmental conditions in the Vazella pourtalesii glass sponge grounds of the Scotian shelf. Front. Mar. Sci. 7, 597682 (2021).

    Article 

    Google Scholar
     

  • Maier, S. R. et al. Recycling pathways in cold-water coral reefs: Use of dissolved organic matter and bacteria by key suspension feeding taxa. Sci. Rep. 10, 9942 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns. 154–158. https://doi.org/10.1007/978-3-319-21012-4 (2017).

  • De Clippele, L. H. et al. Mapping cold-water coral biomass: An approach to derive ecosystem functions. Coral Reefs 40, 215–231 (2021).

    Article 

    Google Scholar
     

  • Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.604879 (2021).

    Article 

    Google Scholar
     

  • Bart, M. C. et al. Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts. Sci. Rep. https://doi.org/10.1038/s41598-020-74670-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, J. J. The functional roles of marine sponges. Estuar Coast Shelf Sci. 79, 341–353 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Beazley, L. I., Kenchington, E. L., Murillo, F. J. & Sacau, M. D. M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70, 1471–1490 (2013).

    Article 

    Google Scholar
     

  • Kazanidis, G., Henry, L. A., Roberts, J. M. & Witte, U. F. M. Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs 35, 193–208 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hawkes, N. J. Epibenthic Megafauna Associated with Sponge Grounds Formed by the Unique Glass Sponge Vazella Pourtalesii in Emerald Basin, Nova Scotia, Canada, MSc Thesis (2017).

  • Busch, K. et al. Microbial diversity of the glass sponge Vazella pourtalesii in response to anthropogenic activities. Conserv. Genet. 21, 1001–1010 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bell, J. J. & Barnes, D. K. A. Sponge morphological diversity: A qualitative predictor of species diversity?. Aquat. Conserv. 11, 109–121 (2001).

    Article 

    Google Scholar
     

  • Fuller, S. D., Murillo Perez, F. J., Wareham, V. & Kenchington, E. SC WG On the ecosystem approach to fisheries management—May 2008 vulnerable marine ecosystems dominated by deep-water corals and sponges in the NAFO convention area. Northw. Atlant. Fish. Org. 08/22, N5524 (2008).


    Google Scholar
     

  • Hawkes, N. et al. Glass sponge grounds on the Scotian Shelf and their associated biodiversity. Mar. Ecol. Prog. Ser. 614, 91–109 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Coad, B. W. Annotated list of the arctic marine fishes of Canada. Can. MS Rep. Fish. Aquat. Sci. 2674, 112 (2004).


    Google Scholar
     

  • Bertolino, M. et al. Sponges as feeding resource for the white seabream Diplodus sargus (Linnaeus, 1758) from the Mediterranean Sea. Eur. Zool. J. 91, 1192–1198 (2024).

    Article 

    Google Scholar
     

  • Beazley, L. et al. Predicted distribution of the glass sponge Vazella pourtalesii on the Scotian Shelf and its persistence in the face of climatic variability. PLoS ONE 13, e0205505 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenchington, E. et al. Delineating coral and sponge concentrations in the biogeographic regions of the east coast of Canada using spatial analyses. DFO Can. Sci. Advis. Sec. Res. Doc. 41, 202 (2010).


    Google Scholar
     

  • Kenchington, E. et al. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators. PLoS ONE 9, e109365 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuller, S. D. Diversity of Marine Sponges in the Northwest Atlantic (PhD Thesis). https://dalspace.library.dal.ca/handle/10222/13454 (2011).

  • DFO. Occurrence, Sensitivity to Fishing, and Ecological Function of Corals, Sponges and Hydrothermal Vents in Canadian Waters (2010).

  • De Clippele, L. H. et al. Cruise report in support of maritimes region research project ‘use of passive acoustics to quantify fish biodiversity and habitat use’: Ocean Observation systems in the gully MPA and Scotian Shelf 2022. Can. Manuscr. Rep. Fish. Aquat. Sci. 3260, 231 (2023).


    Google Scholar
     

  • Garrison, L. & Link, J. Dietary guild structure of the fish community in the Northeast United States continental shelf ecosystem. Mar. Ecol. Prog. Ser. 202, 231–240 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Auster, P. J. & Link, J. S. Compensation and recovery of feeding guilds in a northwest Atlantic shelf fish community. Mar. Ecol. Prog. Ser. 382, 163–172 (2009).

    Article 
    ADS 

    Google Scholar
     

  • DFO. Maritimes research vessel survey trends on the Scotian Shelf and Bay of Fundy for 2022 (2023).

  • DFO. Maritimes research vessel survey trends on the Scotian Shelf and Bay of Fundy for 2023 (2024).

  • Dwyer, K. S. Proceedings for the Zonal Peer Review Pre-COSEWIC Assessment for American Plaice : Meeting Dates, October 22–24, 2019: Location, St. John’s, NL. (Canadian Science Advisory Secretariat (CSAS), 2022).

  • Bowering, W. R. & Brodie, W. B. Distribution of commercial flatfishes in the Newfoundland-Labrador region of the Canadian northwest Atlantic and changes in certain biological parameters since exploitation. Neth. J. Sea Res. 27, 407–422 (1991).

    Article 

    Google Scholar
     

  • Pitt, R. K. Age and growth of American plaice (Hippoglossoides platessoides) in the Newfoundland area of the Northwest Atlantic. J. Fish. Res. BD. Canada 5, 1077–1099 (1967).

    Article 

    Google Scholar
     

  • Brodziak, J. K. T., Holmes, E. M., Sosebee, K. A. & Mayo, R. K. Assessment of the silver hake resource in the northwest Atlantic in 2000. Northeast Fish. Sci. Center Ref. Docum. 01–03, 134 (2001).


    Google Scholar
     

  • Walsh, S. J. Life history traits and spawning characteristics in populations of long rough dab (American Plaice) Hippoglossoides platessoides (Fabricius) in the North Atlantic. Neth. J. Sea Res. 32, 241–254 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, L. Investigating Diet, Distribution, and Growth of Silver Hake (Merluccius Bilinearis) in Their Northernmost Extent in the Gulf of St. Lawrence. Master of Science (2020).

  • Hannah, C. G., Shore, J. A., Loder, J. W. & Naimie, C. E. Seasonal circulation on the western and central Scotian shelf. J. Phys. Oceanogr. 31, 591 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Morgan, M. J. The relationship between fish condition and the probability of being mature in American plaice (Hippoglossoides platessoides). ICES J. Mar. Sci. 61, 64–70 (2004).

    Article 

    Google Scholar
     

  • Beamish, F. Vertical migration by demersal fish in the northwest Atlantic. J. Fish. Res. Canada 23, 109–139 (1965).

    Article 

    Google Scholar
     

  • Steele, D. H. The redfish (Sebastes Marinus) in the Western Gulf of St. Lawrence. J. Fish. Res. Canada 14, 899–924 (1957).

    Article 

    Google Scholar
     

  • Kenchington, T. J. Vertical distribution and movements of larval redfishes (Sebastes spp.) in the Southern Gulf of St. Lawrence. J. Northw. Atl. Fish. Sci 11, 43–49 (1991).

    Article 

    Google Scholar
     

  • Gauthier, S. & Rose, G. A. Acoustic observation of diel vertical migration and shoaling behaviour in Atlantic redfishes. J. Fish. Biol. 61, 1135–1153 (2002).

    Article 

    Google Scholar
     

  • Grinyó, J. et al. Occurrence and behavioral rhythms of the endangered Acadian redfish (Sebastes fasciatus) in the Sambro Bank (Scotian Shelf). Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1158283 (2023).

    Article 

    Google Scholar
     

  • Fahay, M. P. & Able, K. W. White hake, Urophycis tenuis, in the Gulf of Maine: Spawning seasonality, habitat use, and growth in young of the year and relationships to the Scotian Shelf population. Can. J. Zool. 67, 1715–1724 (1988).

    Article 

    Google Scholar
     

  • Auster, P. J., Lindholm, J. & Valentine, P. C. Variation in habitat use by juvenile Acadian redfish, Sebastes fasciatus. Environ. Biol. Fish. 68, 381–389 (2003).

    Article 

    Google Scholar
     

  • Rikhter, V. A., Sigaev, I. K., Vinogradov, V. A. & Isakov, V. I. Silver hake of scotian shelf: Fishery & environmental conditions & distribution & and biology and abundance dynamics. J. Northw. Atl. Fish. Sci 29, 51–92 (2001).

    Article 

    Google Scholar
     

  • Bowman, R. E., Bowman, E. W., Rowman, K. E., Bowman, E. W. & Bowman, K. E. Diurnal variation in the feeding intensity and catchability of silver hake (Merluccius bilinearis). Can. J. Fish. Aquat. Sci. 37, 1565–1572 (1980).

    Article 

    Google Scholar
     

  • Ouellette-Plante, J., Chabot, D., Nozères, C. & Bourdages, H. Diets of DEMERSAL FISH from the CCGS Teleost Ecosystemic Surveys in the Estuary and Northern Gulf of St. Lawrence, August 2015–2017 (2015).

  • Brown-Vuillemin, S., Tremblay, R., Chabot, D., Sirois, P. & Robert, D. Feeding ecology of redfish (Sebastes sp.) inferred from the integrated use of fatty acid profiles as complementary dietary tracers to stomach content analysis. J. Fish Biol. 102, 1049–1066 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savenkoff, C., Morin, B., Chabot, D. & Castonguay, M. Main Prey and Predators of Redfish (Sebastes Spp.) in the Northern Gulf of St. Lawrence during the Mid-1980s, Mid-1990s, and Early 2000s Canadian Technical Report of Fisheries and Aquatic Sciences 2648 (2006).

  • Ouellette-Plante, J., Chabot, D., Nozères, C. & Bourdages, H. Diets of Demersal Fish from the CCGS Teleost Ecosystemic Surveys in the Estuary and Northern Gulf of St. Lawrence, August 2015–2017. https://www.researchgate.net/publication/358793388 (2020).

  • Brown-Vuillemin, S. et al. Diet composition of redfish (Sebastes sp.) during periods of population collapse and massive resurgence in the Gulf of St. Lawrence. Front. Mar. Sci. 9, 963039 (2022).

    Article 

    Google Scholar
     

  • Lock, M. C. & Packer, D. B. Silver Hake, Merluccius bilinearis, Life History and Habitat Characteristics. NOAA Technical Memorandum NMFS-NE-186 (2004).

  • Maldonado, M., Navarro, L., Grasa, A., Gonzalez, A. & Vaquerizo, I. Silicon uptake by sponges: A twist to understanding nutrient cycling on continental margins. Sci. Rep. 1, 1–30 (2011).

    Article 

    Google Scholar
     

  • Coppock, A. G., Kingsford, M. J., Battershill, C. N. & Jones, G. P. Significance of fish–sponge interactions in coral reef ecosystems. Coral Reefs 41, 1285–1308 (2022).

    Article 

    Google Scholar
     

  • Pérez-Rodríguez, A., Howell, D., Casas, M., Saborido-Rey, F. & Ávila-De Melo, A. Dynamic of the Flemish cap commercial stocks: Use of a gadget multispecies model to determine the relevance and synergies among predation, recruitment, and fishing. Can. J. Fish. Aquat. Sci. 74, 582–597 (2017).

    Article 

    Google Scholar
     

  • Linke, S. et al. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Front. Ecol. Environ. 16, 231–238 (2018).

    Article 

    Google Scholar
     

  • McAllister, D. E. Sand-hiding behavior in young white hake. Can. Field-Natur. 74, 177–178 (1960).


    Google Scholar
     

  • Auster, P., Richard, J. M. & LaRosa, S. C. Patterns of microhabitat utilization by mobile megafauna on the southern New England (USA) continental shelf and slope. Mar. Ecol. Prog. Ser. 127, 77–85 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Wurz, E. et al. The hexactinellid deep-water sponge Vazella pourtalesii (Schmidt, 1870) (Rossellidae) copes with temporarily elevated concentrations of suspended natural sediment. Front. Mar. Sci. 8, 611539 (2021).

    Article 

    Google Scholar
     

  • Guénette, S. & Clark, D. Canadian Science Advisory Secretariat (CSAS) Information in Support of Recovery Potential Assessment for White Hake (Urophycis Tenuis) from the Scotian Shelf (NAFO Divs. 4VWX5z). http://www.dfo-mpo.gc.ca/csas-sccs/ (2016).

  • Arkema, K. K. & Samhouri, J. F. Linking ecosystem health and services to inform marine ecosystem-based management. Am. Fish. Soc. Symp. 79, 9–25 (2012).


    Google Scholar
     

  • Arkema, K. K., Abramson, S. C. & Dewsbury, B. M. Marine ecosystem-based management: From characterization to implementation. Front. Ecol. Environ. 4, 525–532 (2006).

    Article 

    Google Scholar
     

  • Cai, W. et al. Biofouling sponges as natural eDNA samplers for marine vertebrate biodiversity monitoring. Sci. Total Environ. 946, 174148 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pawlowski, J., Bonin, A., Boyer, F., Cordier, T. & Taberlet, P. Environmental DNA for biomonitoring. Mol. Ecol. 30(13), 2931–2936. https://doi.org/10.1111/mec.16023 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samplers. Curr. Biol. 29, R401–R402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Clippele, L. H. & Risch, D. measuring sound at a cold-water coral reef to assess the impact of COVID-19 on noise pollution. Front. Mar. Sci. 8, 674702 (2021).

    Article 

    Google Scholar
     

  • Havlik, M. N., Predragovic, M. & Duarte, C. M. State of play in marine soundscape assessments. Front. Mar. Sci. 9, 919418 (2022).

    Article 

    Google Scholar
     

  • Hendricks, A. et al. Compact and automated eDNA sampler for in situ monitoring of marine environments. Sci. Rep. 13, 5210 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mouy, X. et al. Automatic detection of unidentified fish sounds: A comparison of traditional machine learning with deep learning. Front. Remote Sens. https://doi.org/10.3389/frsen.2024.1439995 (2024).

    Article 

    Google Scholar
     

  • Clark, H. P. et al. New interactive machine learning tool for marine image analysis. R. Soc. Open Sci. https://doi.org/10.1098/rsos.231678 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doherty, P. & Horsman, T. Ecologically and biologically significant areas of the Scotian shelf and environs: A compilation of scientific expert opinion. Can. Tech. Rep. Fish. Aquat. Sci 2774, 57 (2007).


    Google Scholar
     

  • Kenchington, E., Lirette, C. & De Clippele, L. H. Cruise Report in support of maritimes region research project: Use of passive acoustics to quantify fish biodiversity and habitat use. Can. Manuscr. Rep. Fish. Aquat. Sci. 3231, 231 (2021).


    Google Scholar
     

  • De Clippele, L. H. et al. Cruise report in support of Maritimes region research project ‘use of passive acoustics to quantify fish biodiversity and habitat use’: Ocean Observation systems in the Gully MPA and Scotian shelf 2023. Can. Manuscr. Rep. Fish. Aquat. Sci. 3288, 231 (2024).


    Google Scholar
     

  • Whoriskey, K. et al. Current and emerging statistical techniques for aquatic telemetry data: A guide to analysing spatially discrete animal detections. Methods Ecol. Evol. 10, 935–948 (2019).

    Article 

    Google Scholar
     

  • Nozères, C. et al. Image annotations for biodiversity with benthic landers in the Gully MPA and Scotian Shelf from 2021–2023. Can. Manuscr. Rep. Fish. Aquat. Sci. 3290, 99 (2024).


    Google Scholar
     

  • Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0—Browsing and annotating large marine image collections. Front. Mar. Sci. 4, 83 (2017).

    Article 

    Google Scholar
     

  • Howell, K., Bridges, A., Davies, J., Parimbelli, A. & Piechaud, N. An Ecologist’s guide to BIIGLE. Univ. Plymouth https://doi.org/10.5281/zenodo.7728927 (2023).

  • Alston, J. M. et al. Mitigating pseudoreplication and bias in resource selection functions with autocorrelation-informed weighting. Methods Ecol. Evol. 14, 643–654 (2023).

    Article 

    Google Scholar
     

  • Iverson, S. J. et al. The ocean tracking network: Advancing frontiers in aquatic science and management. Can. J. Fish. Aquat. Sci. 76, 1041–1051 (2019).

    Article 

    Google Scholar
     

  • de Froe, E. et al. Hydrography and food distribution during a tidal cycle above a cold-water coral mound. Deep Sea Res. 1 Oceanogr. Res. Pap. 189, 103854 (2022).

    Article 

    Google Scholar
     

  • O’Reilly, J. E. & Werdell, P. J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 229, 32–47 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenchington, E. et al. Canadian Science Advisory Secretariat (CSAS) Delineation of Coral and Sponge Significant Benthic Areas in Eastern Canada Using Kernel Density Analyses and Species Distribution Models. http://www.dfo-mpo.gc.ca/csas-sccs/ (2016).

  • Beazley, L. et al. Predicted distribution of the glass sponge Vazella pourtalesii on the Scotian Shelf and its persistence in the face of climatic variability. PLoS One 13, e0205505 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Kuhn, M. et al. Package ‘Caret’: Classification and Regression Training (2023).

  • Akselrud, A. C. I. Random forest regression models in ecology: Accounting for messy biological data and producing predictions with uncertainty. Fish. Res. 280, 107161 (2024).

    Article 

    Google Scholar
     

  • Dokter, A. M. et al. bioRad: Biological analysis and visualization of weather radar data. Ecography 42, 852–860 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Carslaw, D. & Ropkins, K. Package ‘Openair’. http://www.openair-project.org/ (2014).

  • Navarro, D. Package ‘Lsr’ (2022).



  • Source link

    More From Forest Beat

    A glimpse into Oomycota diversity in freshwater lakes and adjacent forests...

    Burki, F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect. Biol. 6, a016147 (2014).Article  ...
    Biodiversity
    9
    minutes

    A new study shows how garden flowers keep city pollinators flying...

    When we think of cities, gardens might not be the first thing that comes to mind. But these green patches — whether in...
    Biodiversity
    3
    minutes

    If it looks like a dire wolf, is it a dire...

    Biotech company Colossal Biosciences made headlines in April 2025 after claiming it had “successfully restored … the dire wolf...
    Biodiversity
    7
    minutes

    Negotiating risks to natural capital in net-zero transitions

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).Article  ...
    Biodiversity
    5
    minutes
    spot_imgspot_img