Garcia-ulloa, J., Verones, F., Huijbregts, M. A. J. & Schipper, A. M. Article habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world ’ s terrestrial ecoregions habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world ’ s terrestrial ecoregions. One Earth. 4, 1505–1513 (2021).
Almeida, R. J., Bonachela, J. A. & Lockwood, J. L. Multiple co- occurring bioeconomic drivers of overexploitation can accelerate rare species extinction risk. Journel Appl. Ecol. 60, 754–763 (2023).
Mouafo, A. D. T. Maximum entropy modeling of giant Pangolin Smutsia gigantea (Illiger, 1815) habitat suitability in a protected forest-savannah transition area of central Cameroon. 43, (2023).
White, K. S., Gregovich, D. P. & Levi, T. Projecting the future of an alpine ungulate under climate change scenarios. Glob Chang. Biol. 24, 1136–1149 (2018).
van Hassel, F. & Bovenkerk, B. How Should We Help Wild Animals Cope with Climate Change? The Case of the Iberian Lynx. Animals 13, (2023).
Anand, V. & Oinam, B. Predicting the current and future potential Spatial distribution of endangered rucervus eldii eldii (Sangai) using maxent model. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-08950-1 (2021).
Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple Spatial scales. Glob Chang. Biol. 26, 1196–1211 (2020).
Haq, S. M. et al. Climate change and human activities, the significant dynamic drivers of Himalayan Goral distribution (Naemorhedus goral). Biology (Basel) 12, (2023).
Bastille-Rousseau, G. et al. Climate change can alter predator–prey dynamics and population viability of prey. Oecologia 186, 141–150 (2018).
Botello, F., Casta, S. & Munguía-carrara, M. & Mayani-par, F. Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. (2020). https://doi.org/10.1016/j.biocon.2020.108864
Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev. Clim. Change. 5, 317–335 (2014).
Mahmood, T. et al. Historical and current distribution ranges and loss of mega-herbivores and carnivores of Asia. PeerJ 9, 1–23 (2021).
Qasim, S. et al. Predicting current and future habitat of Indian Pangolin (Manis crassicaudata) under climate change. Sci. Rep. 14, 7564 (2024).
Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob Chang. Biol. 22, 2505–2515 (2016).
Fletcher, R. J., Reichert, B. E. & Holmes, K. The negative effects of habitat fragmentation operate at the scale of dispersal. Ecology 99, 2176–2186 (2018).
Bush, A. & Hoskins, A. J. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 62, 382–396 (2017).
Gray, T. N. E. et al. The wildlife snaring crisis: an insidious and pervasive threat to biodiversity in Southeast Asia. Biodivers. Conserv. 27, 1031–1037 (2018).
Sony, R. K., Sen, S., Kumar, S., Sen, M. & Jayahari, K. M. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the Southern Western ghats, India. Ecol. Eng. 120, 355–363 (2018).
Weiskopf, S. R. Climate Change Effects on Deer and Moose. 1–13 (2015). https://doi.org/10.1002/jwmg.21649
Khan, M. Z. et al. Abundance, distribution and conservation of key ungulate species in Hindu kush, Karakoram and Western Himalayan (HKH) mountain ranges of Pakistan. 1050–1058 (2014).
Akrim, F., Mahmood, T., Nadeem, M. S., Andleeb, S. & Qasim, S. Spatial distribution and dietary niche breadth of the Leopard Panthera Pardus (Carnivora: Felidae) in the Northeastern Himalayan region of Pakistan. Turkish J. Zool. 42, 585–595 (2018).
Timmins, R. J., Steinmetz, R., Samba Kumar, N. & Anwarul Islam, M. & Sagar Baral, H. Muntiacus vaginalis. The IUCN Red List of Threatened Species 2016: e. T136551A22165292. Preprint at (2016).
Sharma, B. K., Kulshreshtha, S. & Rahmani, A. R. Faunal heritage of rajasthan, india: general background and ecology of vertebrates. Faunal Herit. Rajasthan India: Gen. Backgr. Ecol. Vertebrates. 1–645. https://doi.org/10.1007/978-1-4614-0800-0 (2013).
Zulfiqar, S. & Minhas, R. A. Population and conservation status of barking deer (Muntiacus muntjac) in Pir Lasorha National park and other areas of district kotli, Azad Jammu and kashmir, Pakistan. Pak J. Zool 43, (2011).
Akrim, F. et al. Habitat suitability of common Leopard in Northern Pakistan. Ecosphere 16, (2025).
Stein, A. B. et al. Panthera pardus (amended version of 2019 assessment). The IUCN Red List of Threatened Species (2020).
Sheikh & Molur. Status and red list of pakistan’s mammals based on the Pakistan mammal conservation assessment & managment plan workshop 18–22 August 2003. (2004). Management 312 Preprint at.
Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Trans. Royal Soc. B: Biol. Sci. 360, 443–455 (2005).
Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53, 151–158 (2019).
Riquelme, C. et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes range. PeerJ 6, e5222 (2018).
Malakoutikhah, S., Fakheran, S., Hemami, M., Tarkesh, M. & Senn, J. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib. 26, 1383–1396 (2020).
Roberts, T. J. Mammals of Pakistan. Revised Edition Oxford University Press. Preprint at (1997).
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Scridel, D. et al. A review and meta-analysis of the effects of climate change on holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).
Beaumont, L. J., Esperón-Rodríguez, M., Nipperess, D. A., Wauchope-Drumm, M. & Baumgartner, J. B. Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biol. Conserv. 237, 230–237 (2019).
Ahmadi, M. et al. Protecting alpine biodiversity in the middle East from climate change: implications for high-elevation birds. Divers Distrib 30, (2024).
Champion, H. G., Seth, S. K. & Khattak, G. M. Forest Types of Pakistan (Pakistan Forest Institute, 1965).
USGS. Arc-Second Elevation (GTOPO30); Preprint at. (1996).
GOP. (2021). http://tbttp.gov.pk/protected-areas-initiative.php
Akrim, F. et al. Niche partitioning by sympatric civets in the Himalayan foothills of Pakistan. PeerJ 11, e14741 (2023).
Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).
Monterroso, P., Alves, P. C. & Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern europe: implications for species coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417 (2014).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Waseem, M. et al. Occupancy, habitat suitability and habitat preference of endangered Indian Pangolin (Manis crassicaudata) in Potohar plateau and Azad Jammu and kashmir, Pakistan. Glob Ecol. Conserv. 23, e01135–e01135 (2020).
Munawar, N. et al. Narrow range of suitable habitat and poaching driving Indian Pangolin (Manis crassicaudata) towards extirpation in Mardan district, pakistan. Hystrix, the Italian. J. Mammal. 0 https://doi.org/10.4404/hystrix-00616-2023 (2023).
Mouafo, A. D. T. et al. Maximum entropy modeling of giant Pangolin Smutsia gigantea (Illiger, 1815) habitat suitability in a protected forest-savannah transition area of central Cameroon. Glob Ecol. Conserv. 43, e02395 (2023).
Ahmadi, M., Hemami, M., Kaboli, M. & Shabani, F. MaxEnt brings comparable results when the input data are being completed; model parameterization of four species distribution models. Ecol Evol 13, (2023).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
Muscarella, R. et al. ENM eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).
Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob Chang. Biol. 11, 1504–1513 (2005).
Wei, B., Wang, R., Hou, K., Wang, X. & Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L. using maxent model under climate change in China. Glob Ecol. Conserv. 16, e00477 (2018).
Zhang, X., Li, G. & Du, S. Simulating the potential distribution of elaeagnus angustifolia L. based on Climatic constraints in China. Ecol. Eng. 113, 27–34 (2018).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023). https://www.R-project.org/
Hijmans, R. J. & van Etten, J. raster: Geographic data analysis and modeling. 246 Preprint at (2021). https://rspatial.org/raster
Pebesma, E. & sf Simple Features for R. CRAN: Contributed Packages. (2016). https://doi.org/10.32614/CRAN.package.sf
Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).
Zhuo, Y. et al. Siberian Ibex Capra sibirica respond to climate change by shifting to higher latitudes in Eastern Pamir. Divers. (Basel). 14, 750 (2022).
Riquelme, C. et al. Protected areas’ effectiveness under climate change: A latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. PeerJ 2018, 1–21 (2018).
Schmitz, O. J. & Barton, B. T. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control. 75, 87–96 (2014).
Gregory, A., Spence, E., Beier, P. & Garding, E. Toward best management practices for ecological corridors. Land. (Basel). 10, 140 (2021).
Opperman, J. J. & Merenlender, A. M. Deer herbivory as an ecological constraint to restoration of degraded riparian corridors. Restor. Ecol. 8, 41–47 (2000).
Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob Chang. Biol. 18, 2246–2255 (2012).
Paruelo, J. M., Jobbágy, E. G. & Sala, O. E. Current distribution of ecosystem functional types in temperate South America. Ecosystems 4, 683–698 (2001).
Gautam, H., Arulmalar, E., Kulkarni, M. R. & Vidya, T. N. C. NDVI is not reliable as a surrogate of forage abundance for a large herbivore in tropical forest habitat. Biotropica 51, 443–456 (2019).
Sharma, C. M. et al. Forecasting the Fate of Forest Dwellers: Comparative Modeling of Barking Deer Habitats Against Climatic and Anthropogenic Shifts in the Western, Central, and Eastern Himalayas. Preprint at (2024). https://doi.org/10.21203/rs.3.rs-4819699/v1
Neupane, B. et al. Ecological factors determining barking deer distribution and habitat use in the Mid-Hills of Nepal. Front Ecol. Evol 10, (2022).