Forecasting impacts of climate change on barking deer distribution in Pakistan


  • Garcia-ulloa, J., Verones, F., Huijbregts, M. A. J. & Schipper, A. M. Article habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world ’ s terrestrial ecoregions habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world ’ s terrestrial ecoregions. One Earth. 4, 1505–1513 (2021).

    ADS 

    Google Scholar
     

  • Almeida, R. J., Bonachela, J. A. & Lockwood, J. L. Multiple co- occurring bioeconomic drivers of overexploitation can accelerate rare species extinction risk. Journel Appl. Ecol. 60, 754–763 (2023).


    Google Scholar
     

  • Mouafo, A. D. T. Maximum entropy modeling of giant Pangolin Smutsia gigantea (Illiger, 1815) habitat suitability in a protected forest-savannah transition area of central Cameroon. 43, (2023).

  • White, K. S., Gregovich, D. P. & Levi, T. Projecting the future of an alpine ungulate under climate change scenarios. Glob Chang. Biol. 24, 1136–1149 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • van Hassel, F. & Bovenkerk, B. How Should We Help Wild Animals Cope with Climate Change? The Case of the Iberian Lynx. Animals 13, (2023).

  • Anand, V. & Oinam, B. Predicting the current and future potential Spatial distribution of endangered rucervus eldii eldii (Sangai) using maxent model. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-08950-1 (2021).

    PubMed 

    Google Scholar
     

  • Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple Spatial scales. Glob Chang. Biol. 26, 1196–1211 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Haq, S. M. et al. Climate change and human activities, the significant dynamic drivers of Himalayan Goral distribution (Naemorhedus goral). Biology (Basel) 12, (2023).

  • Bastille-Rousseau, G. et al. Climate change can alter predator–prey dynamics and population viability of prey. Oecologia 186, 141–150 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Botello, F., Casta, S. & Munguía-carrara, M. & Mayani-par, F. Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. (2020). https://doi.org/10.1016/j.biocon.2020.108864

  • Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev. Clim. Change. 5, 317–335 (2014).


    Google Scholar
     

  • Mahmood, T. et al. Historical and current distribution ranges and loss of mega-herbivores and carnivores of Asia. PeerJ 9, 1–23 (2021).

    MathSciNet 

    Google Scholar
     

  • Qasim, S. et al. Predicting current and future habitat of Indian Pangolin (Manis crassicaudata) under climate change. Sci. Rep. 14, 7564 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob Chang. Biol. 22, 2505–2515 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Fletcher, R. J., Reichert, B. E. & Holmes, K. The negative effects of habitat fragmentation operate at the scale of dispersal. Ecology 99, 2176–2186 (2018).

    PubMed 

    Google Scholar
     

  • Bush, A. & Hoskins, A. J. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 62, 382–396 (2017).


    Google Scholar
     

  • Gray, T. N. E. et al. The wildlife snaring crisis: an insidious and pervasive threat to biodiversity in Southeast Asia. Biodivers. Conserv. 27, 1031–1037 (2018).


    Google Scholar
     

  • Sony, R. K., Sen, S., Kumar, S., Sen, M. & Jayahari, K. M. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the Southern Western ghats, India. Ecol. Eng. 120, 355–363 (2018).


    Google Scholar
     

  • Weiskopf, S. R. Climate Change Effects on Deer and Moose. 1–13 (2015). https://doi.org/10.1002/jwmg.21649

  • Khan, M. Z. et al. Abundance, distribution and conservation of key ungulate species in Hindu kush, Karakoram and Western Himalayan (HKH) mountain ranges of Pakistan. 1050–1058 (2014).

  • Akrim, F., Mahmood, T., Nadeem, M. S., Andleeb, S. & Qasim, S. Spatial distribution and dietary niche breadth of the Leopard Panthera Pardus (Carnivora: Felidae) in the Northeastern Himalayan region of Pakistan. Turkish J. Zool. 42, 585–595 (2018).


    Google Scholar
     

  • Timmins, R. J., Steinmetz, R., Samba Kumar, N. & Anwarul Islam, M. & Sagar Baral, H. Muntiacus vaginalis. The IUCN Red List of Threatened Species 2016: e. T136551A22165292. Preprint at (2016).

  • Sharma, B. K., Kulshreshtha, S. & Rahmani, A. R. Faunal heritage of rajasthan, india: general background and ecology of vertebrates. Faunal Herit. Rajasthan India: Gen. Backgr. Ecol. Vertebrates. 1–645. https://doi.org/10.1007/978-1-4614-0800-0 (2013).

  • Zulfiqar, S. & Minhas, R. A. Population and conservation status of barking deer (Muntiacus muntjac) in Pir Lasorha National park and other areas of district kotli, Azad Jammu and kashmir, Pakistan. Pak J. Zool 43, (2011).

  • Akrim, F. et al. Habitat suitability of common Leopard in Northern Pakistan. Ecosphere 16, (2025).

  • Stein, A. B. et al. Panthera pardus (amended version of 2019 assessment). The IUCN Red List of Threatened Species (2020).

  • Sheikh & Molur. Status and red list of pakistan’s mammals based on the Pakistan mammal conservation assessment & managment plan workshop 18–22 August 2003. (2004). Management 312 Preprint at.

  • Chape, S., Harrison, J., Spalding, M. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philosophical Trans. Royal Soc. B: Biol. Sci. 360, 443–455 (2005).

    CAS 

    Google Scholar
     

  • Ghoddousi, A. et al. The decline of ungulate populations in Iranian protected areas calls for urgent action against poaching. Oryx 53, 151–158 (2019).


    Google Scholar
     

  • Riquelme, C. et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes range. PeerJ 6, e5222 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malakoutikhah, S., Fakheran, S., Hemami, M., Tarkesh, M. & Senn, J. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib. 26, 1383–1396 (2020).


    Google Scholar
     

  • Roberts, T. J. Mammals of Pakistan. Revised Edition Oxford University Press. Preprint at (1997).

  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).


    Google Scholar
     

  • Scridel, D. et al. A review and meta-analysis of the effects of climate change on holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).


    Google Scholar
     

  • Beaumont, L. J., Esperón-Rodríguez, M., Nipperess, D. A., Wauchope-Drumm, M. & Baumgartner, J. B. Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biol. Conserv. 237, 230–237 (2019).


    Google Scholar
     

  • Ahmadi, M. et al. Protecting alpine biodiversity in the middle East from climate change: implications for high-elevation birds. Divers Distrib 30, (2024).

  • Champion, H. G., Seth, S. K. & Khattak, G. M. Forest Types of Pakistan (Pakistan Forest Institute, 1965).

  • USGS. Arc-Second Elevation (GTOPO30); Preprint at. (1996).

  • GOP. (2021). http://tbttp.gov.pk/protected-areas-initiative.php

  • Akrim, F. et al. Niche partitioning by sympatric civets in the Himalayan foothills of Pakistan. PeerJ 11, e14741 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monterroso, P., Alves, P. C. & Ferreras, P. Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119, 1044–1056 (2013).


    Google Scholar
     

  • Monterroso, P., Alves, P. C. & Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern europe: implications for species coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417 (2014).


    Google Scholar
     

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).


    Google Scholar
     

  • Waseem, M. et al. Occupancy, habitat suitability and habitat preference of endangered Indian Pangolin (Manis crassicaudata) in Potohar plateau and Azad Jammu and kashmir, Pakistan. Glob Ecol. Conserv. 23, e01135–e01135 (2020).


    Google Scholar
     

  • Munawar, N. et al. Narrow range of suitable habitat and poaching driving Indian Pangolin (Manis crassicaudata) towards extirpation in Mardan district, pakistan. Hystrix, the Italian. J. Mammal. 0 https://doi.org/10.4404/hystrix-00616-2023 (2023).

  • Mouafo, A. D. T. et al. Maximum entropy modeling of giant Pangolin Smutsia gigantea (Illiger, 1815) habitat suitability in a protected forest-savannah transition area of central Cameroon. Glob Ecol. Conserv. 43, e02395 (2023).


    Google Scholar
     

  • Ahmadi, M., Hemami, M., Kaboli, M. & Shabani, F. MaxEnt brings comparable results when the input data are being completed; model parameterization of four species distribution models. Ecol Evol 13, (2023).

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).


    Google Scholar
     

  • Muscarella, R. et al. ENM eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).


    Google Scholar
     

  • Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).


    Google Scholar
     

  • Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob Chang. Biol. 11, 1504–1513 (2005).

    ADS 

    Google Scholar
     

  • Wei, B., Wang, R., Hou, K., Wang, X. & Wu, W. Predicting the current and future cultivation regions of Carthamus tinctorius L. using maxent model under climate change in China. Glob Ecol. Conserv. 16, e00477 (2018).


    Google Scholar
     

  • Zhang, X., Li, G. & Du, S. Simulating the potential distribution of elaeagnus angustifolia L. based on Climatic constraints in China. Ecol. Eng. 113, 27–34 (2018).


    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023). https://www.R-project.org/

  • Hijmans, R. J. & van Etten, J. raster: Geographic data analysis and modeling. 246 Preprint at (2021). https://rspatial.org/raster

  • Pebesma, E. & sf Simple Features for R. CRAN: Contributed Packages. (2016). https://doi.org/10.32614/CRAN.package.sf

  • Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).

    ADS 

    Google Scholar
     

  • Zhuo, Y. et al. Siberian Ibex Capra sibirica respond to climate change by shifting to higher latitudes in Eastern Pamir. Divers. (Basel). 14, 750 (2022).


    Google Scholar
     

  • Riquelme, C. et al. Protected areas’ effectiveness under climate change: A latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. PeerJ 2018, 1–21 (2018).

  • Schmitz, O. J. & Barton, B. T. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control. 75, 87–96 (2014).


    Google Scholar
     

  • Gregory, A., Spence, E., Beier, P. & Garding, E. Toward best management practices for ecological corridors. Land. (Basel). 10, 140 (2021).


    Google Scholar
     

  • Opperman, J. J. & Merenlender, A. M. Deer herbivory as an ecological constraint to restoration of degraded riparian corridors. Restor. Ecol. 8, 41–47 (2000).


    Google Scholar
     

  • Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob Chang. Biol. 18, 2246–2255 (2012).

    ADS 

    Google Scholar
     

  • Paruelo, J. M., Jobbágy, E. G. & Sala, O. E. Current distribution of ecosystem functional types in temperate South America. Ecosystems 4, 683–698 (2001).


    Google Scholar
     

  • Gautam, H., Arulmalar, E., Kulkarni, M. R. & Vidya, T. N. C. NDVI is not reliable as a surrogate of forage abundance for a large herbivore in tropical forest habitat. Biotropica 51, 443–456 (2019).


    Google Scholar
     

  • Sharma, C. M. et al. Forecasting the Fate of Forest Dwellers: Comparative Modeling of Barking Deer Habitats Against Climatic and Anthropogenic Shifts in the Western, Central, and Eastern Himalayas. Preprint at (2024). https://doi.org/10.21203/rs.3.rs-4819699/v1

  • Neupane, B. et al. Ecological factors determining barking deer distribution and habitat use in the Mid-Hills of Nepal. Front Ecol. Evol 10, (2022).



  • Source link

    More From Forest Beat

    Mining must overcome challenges to contribute towards a nature-positive future

    The mining industry has decades of experience in restoration, biodiversity management and conservation, often beyond the mine fence. Emma Gagen, Director of Data and...
    Biodiversity
    0
    minutes

    The draft genome sequences of the cosmopolitan centric diatom, the genus...

    Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).Gordon, R....
    Biodiversity
    6
    minutes

    Traces of dipnoan fish document the earliest adaptations of vertebrates to...

    Interpretation of the Reptanichnus acutori igen. et isp. novThe newly discovered trackway is a crucial trace fossil for the analysis presented in this...
    Biodiversity
    9
    minutes

    Assessing the implications of habitat transformations on human-large carnivore interactions outside...

    Frank, B., Glikman, J. A. & Marchini, S. Human–Wildlife Interactions: Turning Conflict into Coexistence - Google Books. Cambridge University Press vol. 23 (2019).Nyhus,...
    Biodiversity
    12
    minutes
    spot_imgspot_img