Functional redundancy compensates for decline of dominant ant species


  • Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 1–10 (2020).

    Article 

    Google Scholar
     

  • Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021).

    Article 

    Google Scholar
     

  • Karban, R. & Huntzinger, M. Decline of meadow spittlebugs, a previously abundant insect, along the California coast. Ecology 99, 2614–2616 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).

    Article 

    Google Scholar
     

  • van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gaston, K. J. & Fuller, R. A. Biodiversity and extinction: losing the common and the widespread. Prog. Phys. Geogr. 31, 213–225 (2007).

    Article 

    Google Scholar
     

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 59–67 (2012).

    Article 

    Google Scholar
     

  • van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

  • Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    Article 

    Google Scholar
     

  • Walker, B. et al. Plant attribute diversity, resilience and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).

    Article 

    Google Scholar
     

  • Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar
     

  • Weigelt, A. et al. The Jena Experiment: six years of data from a grassland biodiversity experiment. Ecology 91, 930–931 (2010).

    Article 

    Google Scholar
     

  • Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Diaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18, 140–146 (2003).

    Article 

    Google Scholar
     

  • Andersen, A. N. & Patel, A. D. Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98, 15–24 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibb, H. & Hochuli, D. F. Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85, 648–657 (2004).

    Article 

    Google Scholar
     

  • Majer, J. D. The maintenance of the ant mosaic in ghana cocoa farms. J. Appl. Ecol. 13, 123–144 (1976).

    Article 

    Google Scholar
     

  • King, J. R. & Tschinkel, W. R. Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J. Anim. Ecol. 75, 1370–1378 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wardle, D. A. et al. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92, 645–656 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zelikova, T. J., Sanders, N. J. & Dunn, R. R. The mixed effects of experimental ant removal on seedling distribution, belowground invertebrates, and soil nutrients. Ecosphere 2, art63 (2011).

    Article 

    Google Scholar
     

  • Parr, C. L., Eggleton, P., Davies, A. B., Evans, T. A. & Holdsworth, S. Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology 97, 1611–1617 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verheyen, K. et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45, 29 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perring, M. P. et al. The Ridgefield Multiple Ecosystem Services Experiment: can restoration of former agricultural land achieve multiple outcomes? Agric. Ecosyst. Environ. 163, 14–27 (2012).

  • Kluge, J. & Kessler, M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38, 394–405 (2011).

    Article 

    Google Scholar
     

  • Farias, A. A. & Jaksic, F. M. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island, Chile. J. Anim. Ecol. 80, 809–817 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bihn, J. H., Gebauer, G. & Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91, 782–792 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gerisch, M., Agostinelli, V., Henle, K. & Dziock, F. More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121, 508–515 (2012).

    Article 

    Google Scholar
     

  • Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Weiher, E. & Keddy, P. A. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74, 159–164 (1995).

    Article 

    Google Scholar
     

  • Perkins, D. M. et al. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Glob. Change Biol. 21, 396–406 (2015).

    Article 

    Google Scholar
     

  • Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wardle, D. A. Is ‘sampling effect’ a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87, 403–407 (1999).

    Article 

    Google Scholar
     

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    Article 

    Google Scholar
     

  • Houadria, M. & Menzel, F. What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages. Oecologia 184, 885–899 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar
     

  • Wardle, D. A. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article 

    Google Scholar
     

  • Yeeles, P., Lach, L., Hobbs, R. J., van Wees, M. & Didham, R. K. Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. Ecology 98, 500–11 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2016).

    Article 

    Google Scholar
     

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gibb, H. & Johansson, T. Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. J. Anim. Ecol. 80, 548–557 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Greenslade, P. J. M. Sampling ants with pitfall traps: digging-in effects. Insectes Soc. 20, 343–353 (1973).

    Article 

    Google Scholar
     

  • Wang, X. G., Johnson, M. W., Opp, S. B., Krugner, R. & Daane, K. M. Honeydew and insecticide bait as competing food resources for a fruit fly and common natural enemies in the olive agroecosystem. Entomol. Exp. Appl. 139, 128–137 (2011).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K., Roger, F. & Bagchi, R. Understandable multifunctionality measures using Hill numbers. Oikos 2023, e09402 (2023).

  • Jing, X. et al. Variation in the methods leads to variation in the interpretation of biodiversity-ecosystem multifunctionality relationships. J. Plant Ecol. 13, 431–441 (2020).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar
     

  • Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).

    Article 

    Google Scholar
     

  • Wood, S. Generalized Additive Models: An Introduction with R (Chapman and Hall, 2017).

  • Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package v.2.3.3 https://cran.r-oject.org/package=AICcmodavg (2023).

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

  • Gotelli, N. J., Ulrich, W. & Maestre, F. T. Randomization tests for quantifying species importance to ecosystem function. Methods Ecol. Evol. 2, 634–642 (2011).

    Article 

    Google Scholar
     

  • Ulrich, W. Impacta FORTRAN program for gradient analysis: version 1.0. (2010); www.home.umk.pl/~ulrichw/Downloads/ImpactManual.pdf

  • Yeeles, P., Lach, L., Hobbs, R. J., & Didham, R. K. D. Data from: functional redundancy compensates for decline of dominant ant species. figshare https://doi.org/10.6084/m9.figshare.27998150 (2025).



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img