Functional redundancy compensates for decline of dominant ant species


  • Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 1–10 (2020).

    Article 

    Google Scholar
     

  • Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021).

    Article 

    Google Scholar
     

  • Karban, R. & Huntzinger, M. Decline of meadow spittlebugs, a previously abundant insect, along the California coast. Ecology 99, 2614–2616 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).

    Article 

    Google Scholar
     

  • van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gaston, K. J. & Fuller, R. A. Biodiversity and extinction: losing the common and the widespread. Prog. Phys. Geogr. 31, 213–225 (2007).

    Article 

    Google Scholar
     

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 59–67 (2012).

    Article 

    Google Scholar
     

  • van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

  • Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    Article 

    Google Scholar
     

  • Walker, B. et al. Plant attribute diversity, resilience and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).

    Article 

    Google Scholar
     

  • Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar
     

  • Weigelt, A. et al. The Jena Experiment: six years of data from a grassland biodiversity experiment. Ecology 91, 930–931 (2010).

    Article 

    Google Scholar
     

  • Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Diaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18, 140–146 (2003).

    Article 

    Google Scholar
     

  • Andersen, A. N. & Patel, A. D. Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98, 15–24 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibb, H. & Hochuli, D. F. Removal experiment reveals limited effects of a behaviorally dominant species on ant assemblages. Ecology 85, 648–657 (2004).

    Article 

    Google Scholar
     

  • Majer, J. D. The maintenance of the ant mosaic in ghana cocoa farms. J. Appl. Ecol. 13, 123–144 (1976).

    Article 

    Google Scholar
     

  • King, J. R. & Tschinkel, W. R. Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J. Anim. Ecol. 75, 1370–1378 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wardle, D. A. et al. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92, 645–656 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zelikova, T. J., Sanders, N. J. & Dunn, R. R. The mixed effects of experimental ant removal on seedling distribution, belowground invertebrates, and soil nutrients. Ecosphere 2, art63 (2011).

    Article 

    Google Scholar
     

  • Parr, C. L., Eggleton, P., Davies, A. B., Evans, T. A. & Holdsworth, S. Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes. Ecology 97, 1611–1617 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verheyen, K. et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45, 29 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perring, M. P. et al. The Ridgefield Multiple Ecosystem Services Experiment: can restoration of former agricultural land achieve multiple outcomes? Agric. Ecosyst. Environ. 163, 14–27 (2012).

  • Kluge, J. & Kessler, M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38, 394–405 (2011).

    Article 

    Google Scholar
     

  • Farias, A. A. & Jaksic, F. M. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island, Chile. J. Anim. Ecol. 80, 809–817 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bihn, J. H., Gebauer, G. & Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91, 782–792 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gerisch, M., Agostinelli, V., Henle, K. & Dziock, F. More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121, 508–515 (2012).

    Article 

    Google Scholar
     

  • Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Weiher, E. & Keddy, P. A. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74, 159–164 (1995).

    Article 

    Google Scholar
     

  • Perkins, D. M. et al. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes. Glob. Change Biol. 21, 396–406 (2015).

    Article 

    Google Scholar
     

  • Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wardle, D. A. Is ‘sampling effect’ a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos 87, 403–407 (1999).

    Article 

    Google Scholar
     

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    Article 

    Google Scholar
     

  • Houadria, M. & Menzel, F. What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages. Oecologia 184, 885–899 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar
     

  • Wardle, D. A. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article 

    Google Scholar
     

  • Yeeles, P., Lach, L., Hobbs, R. J., van Wees, M. & Didham, R. K. Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. Ecology 98, 500–11 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2016).

    Article 

    Google Scholar
     

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gibb, H. & Johansson, T. Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants. J. Anim. Ecol. 80, 548–557 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Greenslade, P. J. M. Sampling ants with pitfall traps: digging-in effects. Insectes Soc. 20, 343–353 (1973).

    Article 

    Google Scholar
     

  • Wang, X. G., Johnson, M. W., Opp, S. B., Krugner, R. & Daane, K. M. Honeydew and insecticide bait as competing food resources for a fruit fly and common natural enemies in the olive agroecosystem. Entomol. Exp. Appl. 139, 128–137 (2011).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K., Roger, F. & Bagchi, R. Understandable multifunctionality measures using Hill numbers. Oikos 2023, e09402 (2023).

  • Jing, X. et al. Variation in the methods leads to variation in the interpretation of biodiversity-ecosystem multifunctionality relationships. J. Plant Ecol. 13, 431–441 (2020).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar
     

  • Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).

    Article 

    Google Scholar
     

  • Wood, S. Generalized Additive Models: An Introduction with R (Chapman and Hall, 2017).

  • Mazerolle, M. J. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package v.2.3.3 https://cran.r-oject.org/package=AICcmodavg (2023).

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

  • Gotelli, N. J., Ulrich, W. & Maestre, F. T. Randomization tests for quantifying species importance to ecosystem function. Methods Ecol. Evol. 2, 634–642 (2011).

    Article 

    Google Scholar
     

  • Ulrich, W. Impacta FORTRAN program for gradient analysis: version 1.0. (2010); www.home.umk.pl/~ulrichw/Downloads/ImpactManual.pdf

  • Yeeles, P., Lach, L., Hobbs, R. J., & Didham, R. K. D. Data from: functional redundancy compensates for decline of dominant ant species. figshare https://doi.org/10.6084/m9.figshare.27998150 (2025).



  • Source link

    More From Forest Beat

    For many island species, the next tropical cyclone may be their...

    When a major cyclone tears through an island nation, all efforts rightly focus on saving human lives and restoring...
    Biodiversity
    3
    minutes

    Mapping benthic habitats in Bohai Bay, China

    Habitat classification schemeDeveloping a benthic habitat classification scheme is a fundamental step in benthic habitat mapping, providing a structured framework for organizing and...
    Biodiversity
    8
    minutes

    Effect of climate on traits of dominant and rare tree species...

    Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, SwitzerlandIris Hordijk, Chelsea Chisholm, Daniel S. Maynard & Thomas W. CrowtherWageningen University and Research, Wageningen,...
    Biodiversity
    15
    minutes

    CheloniansTraits: a comprehensive trait database of global turtles and tortoises

    Lyson, T. R. et al. Fossorial origin of the turtle shell. Current Biology 26, 1887–1894 (2016).CAS  PubMed  ...
    Biodiversity
    6
    minutes
    spot_imgspot_img