Genetic diversity, population structure, and cannabinoid variation in feral Cannabis sativa germplasm from the United States


  • ElSohly, M. A. & Slade, D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 78, 539–548 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Radwan, M. et al. Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med. 74, 267–272 (2008).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Poklis, J. L., Thompson, C. C., Long, K. A., Lichtman, A. H. & Poklis, A. Disposition of cannabichromene, cannabidiol, and 9-tetrahydrocannabinol and its metabolites in mouse brain following marijuana inhalation determined by high-performance liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 34, 516–520 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mehmedic, Z. et al. Potency trends of Δ9-THC and other cannabinoids in confiscated Cannabis preparations from 1993 to 2008*. J. Forensic Sci. 55, 1209–1217 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fellermeier, M., Eisenreich, W., Bacher, A. & Zenk, M. H. Biosynthesis of cannabinoids. Eur. J. Biochem. 268, 1596–1604 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, M. S. & Wallace, J. G. Genomic and chemical diversity of commercially available High-CBD industrial hemp accessions. Front. Genet. 12 (2021).

  • de Meijer, E. P. M. et al. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163, 335–346 (2003).

    Article 
    PubMed Central 

    Google Scholar
     

  • Staginnus, C., Zörntlein, S. & de Meijer, E. A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-Rich plants of Cannabis sativa L. J. Forensic Sci. 59, 919–926 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Grassa, C. J. et al. A new Cannabis genome assembly associates elevated Cannabidiol (CBD) with hemp introgressed into marijuana. New Phytol. 230, 1665–1679 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Grassi, G. & McPartland, J. M. Chemical and morphological phenotypes in breeding of Cannabis sativa L. In Cannabis sativa L. – Botany and Biotechnology 137–160 (Springer International Publishing, 2017).

  • Weiblen, G. D. et al. Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol. 208, 1241–1250 (2015).

    Article 
    CAS 

    Google Scholar
     

  • van Velzen, R. & Schranz, M. E. Origin and evolution of the cannabinoid oxidocyclase gene family. Genome Biol. Evol. 13 (2021).

  • US Congress. Agricultural Act of 2014 113–179 (Senate and House of Representatives of the United States of America, 2014).

  • US Congress. Agriculture Improvement Act of 2018 115–334 (Senate and House of Representatives of the United States of America, 2018).

  • Fike, J. I. Industrial hemp: Renewed opportunities for an ancient crop. CRC Crit. Rev. Plant. Sci. 35, 406–424 (2016).

    Article 

    Google Scholar
     

  • Schoenrock, R. E. Hemp in Minnesota During the Wartime Emergency (Mankato State College, 1966).


    Google Scholar
     

  • Robinson, R. The Great Book of Hemp: The Complete Guide to the Environmental, Commercial and Medicinal Uses of the World’s Most Extraordinary Plant Vols. 978-089281541–8 (1996).

  • Wilsie, C. P. & Black, C. A. Hemp production experiments cultural practices and soil requirements. Iowa State Univ. Digit. Repos. 3 (1944).

  • Haney, A. & Kutscheid, B. B. An ecological study of naturalized hemp (Cannabis sativa L.) in East-Central Illinois. Am. Midl. Nat. 93, 1 (1975).

    Article 

    Google Scholar
     

  • Lyster, H. & Dewey Hemp: USDA Yearbook of Agriculture (1914).

  • Stack, G. M. et al. Comparison of recombination rate, reference bias, and unique pangenomic haplotypes in Cannabis sativa using seven de Novo genome assemblies. Int. J. Mol. Sci. 26, 1165 (2025).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lynch, R. C. et al. Domesticated cannabinoid synthases amid a wild mosaic cannabis pangenome. https://doi.org/10.1101/2024.05.21.595196 (2024).

  • Faux, A. M., Draye, X., Flamand, M. C., Occre, A. & Bertin, P. Identification of QTLs for sex expression in dioecious and monoecious hemp (Cannabis sativa L). Euphytica 209, 357–376 (2016).

    Article 

    Google Scholar
     

  • Petit, J. et al. Elucidating the genetic architecture of fiber quality in hemp (Cannabis sativa L.) using a genome-wide association study. Front. Genet. 11 (2020).

  • de Ronne, M., Lapierre, É. & Torkamaneh, D. Genetic insights into agronomic and morphological traits of drug-type cannabis revealed by genome-wide association studies. Sci. Rep. 14, 9162 (2024).

    Article 
    PubMed Central 

    Google Scholar
     

  • GRIN-Global. U.S. National Plant Germplasm System. GRIN-Glob. Web version 11040. GRIN-Global. https://npgsweb.ars-grin.gov/gringlobal/query/summary (2023).

  • Sawler, J. et al. The genetic structure of marijuana and hemp. PLoS One 10, e0133292 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lynch, R. C. et al. Genomic and chemical diversity in Cannabis. CRC Crit. Rev. Plant Sci. 35, 349–363 (2016).

    Article 

    Google Scholar
     

  • Soorni, A., Fatahi, R., Haak, D. C., Salami, S. A. & Bombarely, A. Assessment of genetic diversity and population structure in Iranian Cannabis germplasm. Sci. Rep. 7, 15668 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Ren, G. et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 7 (2021).

  • Chen, X. et al. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits. BMC Plant Biol. 22, 371 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Alsaleh, A. & Yılmaz, G. Exploring Cannabidiol variations, investigation of genetic diversity, population structure and unveiling male-specific genetic marker in industrial hemp (Cannabis sativa L). Genet. Resour. Crop Evol. https://doi.org/10.1007/s10722-024-02015-1 (2024).

    Article 

    Google Scholar
     

  • Halpin-McCormick, A. et al. Examining population structure across multiple collections of Cannabis. Genet. Resour. Crop Evol. https://doi.org/10.1007/s10722-024-01928-1 (2024).

    Article 

    Google Scholar
     

  • Carlson, C. H. et al. Morphometric relationships and their contribution to biomass and cannabinoid yield in hybrids of hemp (Cannabis sativa). J. Exp. Bot. 72, 7694–7709 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Busta, L. et al. Chemical and genetic variation in feral Cannabis sativa populations across the Nebraska climate gradient. Phytochemistry 200, 113206 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Woods, P., Price, N., Matthews, P. & McKay, J. K. Genome-wide polymorphism and genic selection in feral and domesticated lineages of Cannabis sativa. G3 Genes Genomes Genet. 13 (2023).

  • Wenger, J. P. et al. Validating a predictive model of cannabinoid inheritance with feral, clinical, and industrial Cannabis sativa. Am. J. Bot. 107, 1423–1432 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Greenbaum, G., Templeton, A. R., Zarmi, Y. & Bar-David, S. Allelic richness following population founding Events—A stochastic modeling framework incorporating gene flow and genetic drift. PLoS One 9, e115203 (2014).

    Article 
    PubMed Central 

    Google Scholar
     

  • Miller, R. L. Hemp as a Crop for Missouri Farmers: Markets, Economics, Cultivation, Law. Report to Agriculture Task Force, Missouri House of Representatives (1991).

  • Cherney, J. & Small, E. Industrial hemp in North america: Production, politics and potential. Agronomy 6, 58 (2016).

    Article 

    Google Scholar
     

  • Humphrey, J. R. Marketing HempVol. 221, 26–43 (Kentucky Agricultural Experimental Station, 1919).

  • Husbands, J. D. Feasibility of industrial hemp production in the united States Pacific Northwest. USDA Bull. 153, 42–42 (1909).


    Google Scholar
     

  • Serrote, C. M. L., Reiniger, L. R. S., Silva, K. B., dos Rabaiolli, S. M., Stefanel, C. M. & S. & Determining the polymorphism information content of a molecular marker. Gene 726, 144175 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Benkirane, C. et al. Population structure and genetic diversity of Moroccan cannabis (Cannabis sativa L.) germplasm through simple sequence repeat (SSR) analysis. Genet. Resour. Crop Evol. 71, 2037–2051 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hennink, S. Optimisation of breeding for agronomic traits in fibre hemp (Cannabis sativa L.) by study of parent-offspring relationships. Euphytica 78, 69–76 (1994).

    Article 

    Google Scholar
     

  • Roger Adams, M., Clark & J. H. Hunt. Structure of cannabidiol, a product isolated from the Marihuana extract of Minnesota wild hemp. I. J. Am. Chem. Soc. 62, 196–200 (1940).

    Article 

    Google Scholar
     

  • Mechoulam, R. A. et al. Some aspects of cannabinoid chemistry. In The Botany and Chemistry of Cannabis 95–115 (1970).

  • Haney, A. & Bazzaz, F. A. Some ecological implications of the distribution of hemp (Cannabis sativa L.) in the united States of America. In The Botany and Chemistry of Cannabis 39–48 (1970).

  • Toth, J. A. et al. Development and validation of genetic markers for sex and cannabinoid chemotype in Cannabis sativa L. GCB Bioenergy 12, 213–222 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vergara, D. et al. Gene copy number is associated with phytochemistry in Cannabis sativa. AoB Plants 11 (2019).

  • Mabry, M. E. et al. Building a feral future: Open questions in crop ferality. Plants People Planet. 5, 635–649 (2023).

    Article 

    Google Scholar
     

  • Ford, T., Aina, A., Ellison, S., Gordon, T. & Stansell, Z. Utilizing digitized occurrence records of Midwestern feral Cannabis sativa to develop ecological niche models. Ecol. Evol. 14 (2024).

  • Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379 (2011).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Glaubitz, J. C. et al. TASSEL-GBS: A high-capacity genotyping by sequencing analysis pipeline. PLoS One 9, e90346 (2014).

    Article 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    Book 

    Google Scholar
     

  • Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • de Meeûs, T. & Goudet, J. A step-by-step tutorial to use hierfstat to analyse populations hierarchically structured at multiple levels. Infect. Genet. Evol. 7, 731–735 (2007).

    Article 

    Google Scholar
     

  • ElSohly, M. A. et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J. Forensic Sci. 45, 24–30 (2000).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Spatial distribution of exotic lumbricid earthworm Octolasion tyrtaeum in endangered Taxus...

    Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A. & Brook, B. W. Unreported yet massive deforestation driving loss of endemic...
    Biodiversity
    15
    minutes

    Unlocking the African bioeconomy and strengthening biodiversity conservation through genomics and...

    Ebenezer, T. E. et al. Africa: sequence 100,000 species to safeguard biodiversity. Nature 603, 388–392 (2022).CAS  ...
    Biodiversity
    19
    minutes

    Cryptobenthic crab assemblages are more distinct across a 90 m depth gradient...

    Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013). ...
    Biodiversity
    13
    minutes

    Terrestrial land cover shapes fish diversity in a major subtropical river...

    The study was conducted in the Chao Phraya River catchment located in Northern and Central Thailand, covering rivers in both mountainous and plain...
    Biodiversity
    16
    minutes
    spot_imgspot_img