Genetic survey of crucian carp Carassius carassius populations in Hungary for a conservation project to establish live gene bank


  • Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39. https://doi.org/10.1007/s10750-016-3007-0 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597, 1–6. https://doi.org/10.1007/s10750-007-9225-8 (2008).

    Article 

    Google Scholar
     

  • Harper, L. R. et al. Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools. Mol. Ecol. 30(13), 3252–3269. https://doi.org/10.1111/mec.15670 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Poléo, A. B., Schjolden, J., Sørensen, J. & Nilsson, G. E. The high tolerance to aluminium in crucian carp (Carassius carassius) is associated with its ability to avoid hypoxia. PLoS ONE 12(6), e0179519. https://doi.org/10.1371/journal.pone.0179519 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kottelat, M. & Freyhof, J. Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany (2007).

  • Copp, G. H. & Sayer, C. D. Demonstrating the practical impact of publications in aquatic conservation: The case of crucian carp (Carassius carassius) in the east of England. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30(9), 1753–1757. https://doi.org/10.1002/aqc.3353 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sayer, C. D. et al. Recovery of the crucian carp (Carassius carassius (L.)): Approach and early results of an English conservation project. Aquat. Conserv.: Mar. Freshw. Ecosyst. 30(12), 2240–2253. https://doi.org/10.1002/aqc.3422 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tarkan, A. S., Copp, G. H., Zięba, G., Godard, M. J. & Cucherousset, J. Growth and reproduction of threatened native crucian carp (Carassius carassius) in small ponds of Epping Forest, south-East England. Aquat. Conserv. Mar. Freshwat. Ecosyst. 19(7), 797–805. https://doi.org/10.1002/aqc.1028 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Wheeler, A. C. Ponds and fishes in Epping forest, Essex. Lond. Naturalist 77, 107–146 (1998).

    MATH 

    Google Scholar
     

  • Wheeler, A. C. Status of the crucian carp, Carassius carassius (L.) in the UK. Fisheries Manag. Ecol., 7, 315–322 https://doi.org/10.1046/j.1365-2400.2000.007004315.x (2000).

  • Hänfling, B., Bolton, P., Harley, M. & Carvalho, G. R. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw. Biol., 50(3), 403–417. https://doi.org/10.1111/j.1365-2427.2004.01330.x (2005).

  • Lyach, R. In situ management options to improve crucian carp (Carassius carassius, L.) and brown trout (Salmo trutta, L.) population status in Central Europe: A case study from the Czech Republic. Ecol. Evol. 12(7), e9107. https://doi.org/10.1002/ece3.9107 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lusk, S., Hanel, L., Lojkásek, B., Lusková, V. & Muška, M. The red list of lampreys and fishes of the Czech Republic. In Red list of threatened species of the Czech Republic, Vertebrates (eds Němec, M. & Chobot, K.) 51–82 (Příroda, 2017).


    Google Scholar
     

  • Copp, G. H., Tarkan, A. S., Godard, M. J., Edmonds, N. J. & Wesley, K. J. Preliminary assessment of feral goldfish impacts on ponds, with particular reference to native crucian carp. Aquat. Invasions 5(4), 413–422. https://doi.org/10.3391/ai.2010.5.4.11 (2010).

    Article 

    Google Scholar
     

  • Sayer, C. D. et al. Towards the conservation of crucian carp (Carassius carassius): Understanding the extent and causes of decline within part of its native English range. J. Fish Biol. 79, 1608–1624. https://doi.org/10.1111/j.1095-8649.2011.03059.x (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vetemaa, M., Eschbaum, R., Albert, A. & Saat, T. Distribution, sex ratio and growth of Carassius gibelio (Bloch) in coastal and inland waters of Estonia (north-eastern Baltic Sea). J. Appl. Ichthyol. 21, 287–291. https://doi.org/10.1111/j.1439-0426.2005.00680.x (2005).

    Article 

    Google Scholar
     

  • Tóth, B., Várkonyi, E., Hidas, A., Meleg, E. E. & Váradi, L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 66, 784–797. https://doi.org/10.1111/j.0022-1112.2005.00644.x (2005).

    Article 

    Google Scholar
     

  • Busst, G. M. A. & Britton, J. R. Quantifying the growth consequences for crucian carp (Carassius carassius) of competition from non-native fishes. Ecol Freshw Fish 24, 489–492. https://doi.org/10.1111/eff.12155 (2015).

    Article 

    Google Scholar
     

  • Tichopád, T. et al. Spermatozoa morphology and reproductive potential in F1 hybrids of common carp (Cyprinus carpio) and gibel carp (Carassius gibelio). Aquaculture 521, 735092. https://doi.org/10.1016/j.aquaculture.2020.735092 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Keszte, S. et al. Mitochondrial sequence diversity reveals the hybrid origin of invasive gibel carp (Carassius gibelio) populations in Hungary. PeerJ 9, e12441. https://doi.org/10.7717/peerj.12441 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380–383, 13–20. https://doi.org/10.1016/j.aquaculture.2012.11.027 (2013).

    Article 

    Google Scholar
     

  • Fedorčák, J., Križek, P. & Koščo, J. Which factors influence spatio–temporal changes in the distribution of invasive and native species of genus Carassius?. Aquat. Invasions 18(2), 219–230. https://doi.org/10.3391/ai.2023.18.2.105240 (2023).

    Article 

    Google Scholar
     

  • Takács, P. et al. Non-native fish species in Hungarian waters: historical overview, potential sources and recent trends in their distribution. Hydrobiologia 795, 1–22. https://doi.org/10.1007/s10750-017-3147-x (2017).

    Article 
    MATH 

    Google Scholar
     

  • Demeny, F. et al. Observations of the crucian carp (Carassius carassius) pond culture. In: Marković Z (ed) Proceedings of the IV International Conference “Fishery”, May 27–29, 2009. Reinforcement of Sustainable Aquaculture. University of Belgrade, Belgrade, pp 138–144 (2009).

  • Copp, G. H., Černý, J. & Kováč, V. Growth and morphology of an endangered native freshwater fish, crucian carp (Carassius carassius), in an English ornamental pond. Aquat. Conserv.: Mar. Freshw. Ecosyst. 18(1), 32–43. https://doi.org/10.1002/aqc.820 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sikorska, J. et al. Effect of four rearing water temperatures on some performance parameters of larval and juvenile crucian carp (Carassius carassius) under controlled conditions. Aquacult. Res. 49(12), 3874–3880. https://doi.org/10.1111/are.13855 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Demény, F., Józsa, V. & Müller, T. A széles kárász (in Hungarian) in Müller T., Urbányi B. & Staszny Á. (editors) Veszélyeztetett lápi halak megóvása. p.: 121–122 (2020)

  • Hurt, C. & Hedrick, P. Conservation genetics in aquatic species: General approaches and case studies in fishes and springsnails of arid lands. Aquat. Sci. 66(4), 402–413. https://doi.org/10.1007/s00027-004-0726-5 (2004).

    Article 

    Google Scholar
     

  • Hanfling, B. & Harley, M. A molecular approach to detect hybridization between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius auratus and Cyprinus carpio) in UK waters, including a consideration of the taxonomic status of the giebel carp (Carassius spp.). Environment Agency R&D Technical Report W2–077/TR (2003).

  • Janson, S., Wouters, J., Bonow, M., Svanberg, I. & Olsén, K. H. Population genetic structure of crucian carp (Carassius carassius) in man-made ponds and wild populations in Sweden. Aquacult. Int. 23, 359–368. https://doi.org/10.1007/s10499-014-9820-4 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Ivanova, N. V., Zemlak, T. S., Hanner, R. H. & Hebert, P. D. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 7(4), 544–548 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, W., Stacey, N. E., Coffin, J. & Strobeck, C. Isolation and characterization of microsatellite loci in the goldfish Carassius auratus. Mol. Ecol. 4(6), 791–792. https://doi.org/10.1111/j.1365-294X.1995.tb00282.x (1995).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Crooijmans, R. P. M. A., Bierbooms, V. A. F., Komen, J., Van der Poel, J. J. & Groenen, M. A. M. Microsatellite markers in common carp (Cyprinus carpio L.). Anim. Genet. 28(2), 129–134. https://doi.org/10.1111/j.1365-2052.1997.00097 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Yue, G. H. & Orban, L. Polymorphic microsatellites from silver crucian carp (Carassius auratus gibelio Bloch) and cross-amplification in common carp (Cyprinus carpio L.). Mol. Ecol. Notes 2(4), 534–536. https://doi.org/10.1046/j.1471-8286.2002.00308.x (2002).

    Article 
    CAS 

    Google Scholar
     

  • Baerwald, M. R. & May, B. Characterization of microsatellite loci for five members of the minnow family cyprinidae found in the sacramento-san joaquin delta and its tributaries. Mol. Ecol. Notes 4(3), 385–390. https://doi.org/10.1111/j.1471-8286.2004.00661.x (2004).

    Article 
    CAS 

    Google Scholar
     

  • Guo, W. & Gui, J. F. Microsatellite marker isolation and cultured strain identification in Carassius auratus gibelio. Aquacult. Int. 16(6), 497–510. https://doi.org/10.1007/s10499-007-9161-7 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. H. et al. A set of polymorphic trinucleotide and tetranucleotide microsatellite markers for silver crucian carp (Carassius auratus gibelio) and cross-amplification in crucian carp. Biochem. Genet. 48(7–8), 624–635. https://doi.org/10.1007/s10528-010-9344-1 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol. 18(2), 233–234 (2000).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Blacket, M. J., Robin, C., Good, R. T., Lee, S. F. & Miller, A. D. Universal primers for fluorescent labelling of PCR fragments: An efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 12(3), 456–463 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Oosterhout, C., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6, 255–256. https://doi.org/10.1111/j.1471-8286.2005.01082.x (2006).

    Article 
    MATH 

    Google Scholar
     

  • Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kalinowski, S. T. HP-Rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. 5, 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x (2005).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014. https://doi.org/10.1093/genetics/144.4.2001 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631. https://doi.org/10.1093/molbev/msl191 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Langella, O. Populations 1.2.32: Population genetic software (individuals or population distances, phylogenetic trees). Available from http://www.bioinformatics.org/project/?group_id=84 (2011).

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. https://doi.org/10.1093/genetics/155.2.945 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. https://doi.org/10.1093/genetics/164.4.1567 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, Y. L. & Liu, J. X. StructureSelector: A web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. https://doi.org/10.1111/1755-0998.12719 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6, 3461–3475. https://doi.org/10.1002/ece3.2096 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius L. Mol. Ecol. 25(13), 2997–3018. https://doi.org/10.1111/mec.13613 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tapkir, S. et al. Invasive gibel carp (Carassius gibelio) outperforms threatened native crucian carp (Carassius carassius) in growth rate and effectiveness of resource use: Field and experimental evidence. Aquat. Conserv.: Mar. Freshw. Ecosyst. 32(12), 1901–1912. https://doi.org/10.1002/aqc.3894 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tapkir, S. et al. Invasive gibel carp use vacant space and occupy lower trophic niche compared to endangered native crucian carp. Biol. Invasions 25(9), 2917–2928. https://doi.org/10.1007/s10530-023-03081-9 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Jeffries, D. L. et al. Genetic evidence challenges the native status of a threatened freshwater fish (Carassius carassius) in England. Ecol. Evol. 7(9), 2871–2882. https://doi.org/10.1002/ece3.2831 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Takács, P. et al. Population genetic patterns of threatened European Mudminnow (Umbra krameri Walbaum, 1792) in a fragmented landscape: implications for conservation management. PLoS One 10(9), e0138640. https://doi.org/10.1371/journal.pone.0138640 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Al Fatle, F. A. et al. Genetic structure and diversity of native tench (Tinca tinca L. 1758) populations in Hungary—Establishment of basic knowledge base for a breeding program. Diversity 14(5), 336. https://doi.org/10.3390/d14050336 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pavlov, D. A. Life history of two carassius (Cyprinidae) species in the conditions of sympatry. J. Ichthyol. 62(6), 1100–1115. https://doi.org/10.1134/S0032945222060212 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Olsén, K. H. & Bonow, M. Crucian carp (Carassius carassius (L.)), an anonymous fish with great skills. Ichthyol. Res. 70(3), 313–331. https://doi.org/10.1007/s10228-022-00892-z (2023).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes

    Parasitism as a driver of host diversification

    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article  ...
    Biodiversity
    15
    minutes
    spot_imgspot_img