Genome engineering in biodiversity conservation and restoration


  • Shaw, R. E. et al. Global meta-analysis shows action is needed to halt genetic diversity loss. Nature 638, 704–710 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).

    Article 

    Google Scholar
     

  • Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Femerling, G. et al. Genetic load and adaptive potential of a recovered avian species that narrowly avoided extinction. Mol. Biol. Evol. 40, msad256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA 118, e2104642118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, T. J. et al. The global loss of avian functional and phylogenetic diversity from anthropogenic extinctions. Science 386, 55–60 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Letters 14, e12762 (2020).

    Article 

    Google Scholar
     

  • Butchart, S. H. M., Stattersfield, A. J. & Collar, N. J. How many bird extinctions have we prevented? Oryx 40, 266–278 (2006).

    Article 

    Google Scholar
     

  • Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Prior, K. M., Adams, D. C., Klepzig, K. D. & Hulcr, J. When does invasive species removal lead to ecological recovery? Implications for management success. Biol. Invasions 20, 267–283 (2017).

    Article 

    Google Scholar
     

  • Sutherland, W. J., Newton, I. & Green, R. Bird Ecology and Conservation (Oxford Univ. Press, 2004).

  • Marx, V. Can stem cells save the animals? Nat. Methods 22, 8–12 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Yin, K., Chung, M. Y., Lan, B., Du, F. K. & Chung, M. G. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol. 25, 279–279 (2024).

    Article 

    Google Scholar
     

  • Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D. & Greig, D. Hybridization facilitates evolutionary rescue. Evol. Appl. 7, 1209–1217 (2014).

    Article 

    Google Scholar
     

  • Burbrink, F. T. & Gehara, M. The biogeography of deep time phylogenetic reticulation. Syst. Biol. 67, 743–755 (2018).

    Article 

    Google Scholar
     

  • Vedder, D. et al. Hybridization may aid evolutionary rescue of an endangered East African passerine. Evol. Appl. 15, 1177–1188 (2022).

    Article 

    Google Scholar
     

  • Ongaro, L. & Huerta-Sanchez, E. A history of multiple Denisovan introgression events in modern humans. Nat. Genet. 56, 2612–2622 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Reilly, P. F., Tjahjadi, A., Miller, S. L., Akey, J. M. & Tucci, S. The contribution of Neanderthal introgression to modern human traits. Curr. Biol. 32, R970–R983 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Brown, R. M. et al. Range expansion and hybridization in round island petrels (Pterodroma spp.): evidence from microsatellite genotypes. Mol. Ecol. 19, 3157–3170 (2010).

    Article 

    Google Scholar
     

  • Brown, R. M. et al. Phylogenetic relationships in Pterodroma petrels are obscured by recent secondary contact and hybridization. PLoS ONE 6, e20350 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Smith, D. et al. Extinct in the wild: the precarious state of Earth’s most threatened group of species. Science 379, eadd2889 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lacy, R. C. Achieving true sustainability of zoo populations. Zoo. Biol. 32, 19–26 (2012).

    Article 

    Google Scholar
     

  • Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).

    Article 

    Google Scholar
     

  • Segelbacher, G. et al. New developments in the field of genomic technologies and their relevance to conservation management. Conserv. Genet. 23, 217–242 (2021).

    Article 

    Google Scholar
     

  • Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131–131 (2018).

    Article 

    Google Scholar
     

  • Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cavill, E. L. et al. When birds of a feather flock together: severe genomic erosion and the implications for genetic rescue in an endangered island passerine. Evol. Appl. 17, e13739–e13739 (2024).

    Article 

    Google Scholar
     

  • Hoffmann, A. A., Miller, A. D. & Weeks, A. R. Genetic mixing for population management: from genetic rescue to provenancing. Evol. Appl. 14, 634–652 (2020).

    Article 

    Google Scholar
     

  • Leroy, G. et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol. Appl. 11, 1066–1083 (2017).

    Article 

    Google Scholar
     

  • Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 108784 (2020).

    Article 

    Google Scholar
     

  • Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).

    Article 

    Google Scholar
     

  • van Oosterhout, C. Conservation genetics: 50 years and counting. Conserv. Lett. 14, e12789 (2020).

    Article 

    Google Scholar
     

  • McLaughlin, C. M., Hinshaw, C., Sandoval-Arango, S., Zavala-Paez, M. & Hamilton, J. A. Redlisting genetics: towards inclusion of genetic data in IUCN Red List assessments. Conserv. Genet. 26, 213–223 (2025).

    Article 

    Google Scholar
     

  • Jackson, H. A. et al. Genomic erosion in a demographically recovered bird species during conservation rescue. Conserv. Biol. 36, e13918 (2022).

    Article 

    Google Scholar
     

  • Pinto, A. V., Hansson, B., Patramanis, I., Morales, H. E. & van Oosterhout, C. The impact of habitat loss and population fragmentation on genomic erosion. Conserv. Genet. 25, 49–57 (2023).

    Article 

    Google Scholar
     

  • Mualim, K. S. et al. Genetic diversity loss in the Anthropocene will continue long after habitat destruction ends. Preprint at bioRxiv https://doi.org/10.1101/2024.10.21.619096 (2024).

  • Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Grossen, C. & Ramakrishnan, U. Genetic load. Curr. Biol. 34, R1216–R1220 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dussex, N., Morales, H. E., Grossen, C., Dalén, L. & van Oosterhout, C. Purging and accumulation of genetic load in conservation. Trends Ecol. Evol. 38, 961–969 (2023).

    Article 

    Google Scholar
     

  • Bertorelle, G. et al. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492–503 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Adams, P. E. et al. Slow recovery from inbreeding depression generated by the complex genetic architecture of segregating deleterious mutations. Mol. Biol. Evol. 39, msab330 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fontsere, C. et al. Persistent genomic erosion in whooping cranes despite demographic recovery. Preprint at bioRxiv https://doi.org/10.1101/2024.12.12.628160 (2024).

  • Speak, S. A. et al. Genomics‐informed captive breeding can reduce inbreeding depression and the genetic load in zoo populations. Mol. Ecol. Resour. 24, e13967 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).

    Article 

    Google Scholar
     

  • Frankham, R. in Genetic Management of Fragmented Animal and Plant Populations, A1–A6 (Oxford Univ. Press, 2017).

  • Resende, P. S., Viana–Junior, A. B., Young, R. J. & de Azevedo, C. S. A global review of animal translocation programs. Anim. Biodivers. Conserv. https://doi.org/10.32800/abc.2020.43.0221 (2020).

  • Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11, e12412 (2018).

    Article 

    Google Scholar
     

  • Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).

    Article 

    Google Scholar
     

  • Willi, Y. et al. Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. Proc. Natl Acad. Sci. USA 119, e2105076119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bolton, R. L. et al. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 3, R121–R146 (2022).

    Article 

    Google Scholar
     

  • Soulé, M., Gilpin, M., Conway, W. & Foose, T. The millenium ark: how long a voyage, how many staterooms, how many passengers? Zoo. Biol. 5, 101–113 (1986).

    Article 

    Google Scholar
     

  • Rogers, N. Museum drawers go digital. Science 352, 762–765 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rohwer, V. G., Rohwer, Y. & Dillman, C. B. Declining growth of natural history collections fails future generations. PLoS Biol. 20, e3001613 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Raxworthy, C. J. & Smith, B. T. Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol. Evol. 36, 1049–1060 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chemnick, L. G., Houck, M. L. & Ryder, O. A. in Conservation Genetics in the Age of Genomics (eds Amato, G., DeSalle, R., Ryder, O. A. & Rosenbaum, H. C.) 124–130 (Columbia Univ. Press, 2009).

  • Comizzoli, P. C-29: The pan-Smithsonian cryo-initiative-freezing for the future. Cryobiology 69, 509 (2014).

    Article 

    Google Scholar
     

  • Chaplin-Kramer, R. et al. Wildlife’s contributions to people. Nat. Rev. Biodivers. 1, 68–81 (2025).

    Article 

    Google Scholar
     

  • Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evol. 32, 97–107 (2017).

    Article 

    Google Scholar
     

  • Kosch, T. A. et al. Genetic approaches for increasing fitness in endangered species. Trends Ecol. Evol. 37, 332–345 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, M. K. et al. Principles for introducing new genes and species for conservation. Trends Ecol. Evol. 40, 296–307 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Phelps, M. P., Seeb, L. W. & Seeb, J. E. Transforming ecology and conservation biology through genome editing. Conserv. Biol. 34, 54–65 (2019).

    Article 

    Google Scholar
     

  • Iverson, E. N. K. Conservation mitonuclear replacement: facilitated mitochondrial adaptation for a changing world. Evol. Appl. 17, e13642 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article 

    Google Scholar
     

  • Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Khalil, A. M. The genome editing revolution: review. J. Genet. Eng. Biotechnol. 18, 68 (2020).

    Article 

    Google Scholar
     

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bak, R. O., Gomez-Ospina, N. & Porteus, M. H. Gene editing on center stage. Trends Genet. 34, 600–611 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2022).

    Article 

    Google Scholar
     

  • Van Oosterhout, C. Mitigating the threat of emerging infectious diseases; a coevolutionary perspective. Virulence 12, 1288–1295 (2021).

    Article 

    Google Scholar
     

  • Christmas, M. J. et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science 380, eabn3943 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sandler, R. L., Moses, L. & Wisely, S. M. An ethical analysis of cloning for genetic rescue: case study of the black-footed ferret. Biol. Conserv. 257, 109118 (2021).

    Article 

    Google Scholar
     

  • Hildebrandt, T. B. et al. The ART of bringing extinction to a freeze — history and future of species conservation, exemplified by rhinos. Theriogenology 169, 76–88 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Novak, B. J. et al. Towards practical conservation cloning: understanding the dichotomy between the histories of commercial and conservation cloning. Animals 15, 989 (2025).

    Article 

    Google Scholar
     

  • Lanza, R. P. et al. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 79–90 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Loi, P. et al. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gómez, M. C. et al. Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cell 6, 247–258 (2004).

    Article 

    Google Scholar
     

  • Kim, M. K. et al. Endangered wolves cloned from adult somatic cells. Cloning Stem Cell 9, 130–137 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Oh, H. J. et al. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–647 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Gómez, M. C. et al. Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cell 10, 469–484 (2008).

    Article 

    Google Scholar
     

  • Novak, B. J. De-extinction. Genes 9, 548 (2018).

    Article 

    Google Scholar
     

  • van de Lavoir, M.-C. et al. Germline transmission of genetically modified primordial germ cells. Nature 441, 766–769 (2006).

    Article 

    Google Scholar
     

  • van de Lavoir, M.-C. et al. Interspecific germline transmission of cultured primordial germ cells. PLoS ONE 7, e35664 (2012).

    Article 

    Google Scholar
     

  • Ballantyne, M. et al. Direct allele introgression into pure chicken breeds using sire dam surrogate (SDS) mating. Nat. Commun. 12, 659 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Powell, W. A., Newhouse, A. E. & Coffey, V. Developing blight-tolerant American chestnut trees. Cold Spring Harb. Perspect. Biol. 11, a034587 (2019).

    Article 

    Google Scholar
     

  • Witek, K. et al. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nat. Plants 7, 198–208 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zamudio, K. R., McDonald, C. A. & Belasen, A. M. High variability in infection mechanisms and host responses: a review of functional genomic studies of amphibian chytridiomycosis. Herpetologica 76, 189 (2020).

    Article 

    Google Scholar
     

  • Wright, B. et al. Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Sci. Rep. 7, 423 (2017).

    Article 

    Google Scholar
     

  • Silver, L. W. et al. Temporal loss of genome-wide and immunogenetic diversity in a near-extinct Parrot. Mol. Ecol. 34, e17746 (2025).

    Article 

    Google Scholar
     

  • Calvin, K. et al. IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & and Romero, J.) https://www.ipcc.ch/report/ar6/syr/ (IPCC, 2023).

  • Hobman, E. V., Mankad, A., Carter, L. & Ruttley, C. Genetically engineered heat-resistant coral: an initial analysis of public opinion. PLoS ONE 17, e0252739 (2022).

    Article 
    CAS 

    Google Scholar
     

  • van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    Article 

    Google Scholar
     

  • van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).

    Article 

    Google Scholar
     

  • Smeds, L. & Ellegren, H. From high masked to high realized genetic load in inbred Scandinavian wolves. Mol. Ecol. 32, 1567–1580 (2022).

    Article 

    Google Scholar
     

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Santiago, E. & Caballero, A. Effective size and polymorphism of linked neutral loci in populations under directional selection. Genetics 149, 2105–2117 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Petit, J. D., Needham, M. D. & Howe, G. T. Cognitive and demographic drivers of attitudes toward using genetic engineering to restore American chestnut trees. For. Policy Econ. 125, 102385 (2021).

    Article 

    Google Scholar
     

  • Bennett, J. R. et al. Spending limited resources on de-extinction could lead to net biodiversity loss. Nat. Ecol. Evol. 1, 53 (2017).

    Article 

    Google Scholar
     

  • Donlan, J. De-extinction in a crisis discipline. Front. Biogeogr. 6, 25–28 (2014).

    Article 

    Google Scholar
     

  • International Union for Conservation of Nature. Genetic Frontiers for Conservation: An Assessment of Synthetic Biology and Biodiversity Conservation: Synthesis and Key Messages (IUCN, 2019).

  • Gordon, D. R. et al. Responsible governance of gene editing in agriculture and the environment. Nat. Biotechnol. 39, 1055–1057 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barnhill-Dilling, S. K. & Delborne, J. A. The genetically engineered American chestnut tree as opportunity for reciprocal restoration in Haudenosaunee communities. Biol. Conserv. 232, 1–7 (2019).

    Article 

    Google Scholar
     

  • Sainsbury, A. W. & Vaughan‐Higgins, R. J. Analyzing disease risks associated with translocations. Conserv. Biol. 26, 442–452 (2012).

    Article 

    Google Scholar
     

  • International Union for Conservation of Nature. Genetic Frontiers for Conservation: An Assessment of Synthetic Biology and Biodiversity Conservation: Technical Assessment (IUCN, 2019).

  • Molhuizen, T., Beumer, K. & Dorresteijn, I. Who to revive? Explaining charismatic species bias in the selection of de-extinction candidate species. Environ. Plan. E Nat. Space 8, 642–659 (2025).

    Article 

    Google Scholar
     

  • Jones, C. G. in Studies of Mascarene Island Birds (ed. Diamond, A. W.) 208–300 (Cambridge Univ. Press, 1987).

  • Adams, N. E. & Edmands, S. Genomic recovery lags behind demographic recovery in bottlenecked populations of the Channel Island fox, Urocyon littoralis. Mol. Ecol. 32, 4151–4164 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Y. et al. Genome sequences and population genomics provide insights into the demographic history, inbreeding, and mutation load of two ‘living fossil’ tree species of Dipteronia. Plant. J. 117, 177–192 (2023).

    Article 

    Google Scholar
     

  • Dehasque, M. et al. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 187, 3531–3540 (2024).

    Article 
    CAS 

    Google Scholar
     

  • McBride, R. T., McBride, R. T., McBride, R. M. & McBride, C. E. Counting pumas by categorizing physical evidence. Southeast. Naturalist 7, 381–400 (2008).

    Article 

    Google Scholar
     

  • Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11, 615–626 (2009).

    Article 

    Google Scholar
     

  • Hedrick, P. W. Gene flow and genetic restoration: the Florida panther as a case study. Conserv. Biol. 9, 996–1007 (1995).

    Article 

    Google Scholar
     

  • Onorato, D. P. et al. Multi-generational benefits of genetic rescue. Sci. Rep. 14, 17519 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Westemeier, R. L., Buhnerkempe, J. E., Edwards, W. R., Brawn, J. D. & Simpson, S. A. Parasitism of greater prairie-chicken nests by ring-necked pheasants. J. Wildl. Manag. 62, 854 (1998).

    Article 

    Google Scholar
     

  • Bouzat, J. L. et al. Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv. Genet. 10, 191–201 (2008).

    Article 

    Google Scholar
     

  • Liberg, O. et al. Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol. Lett. 1, 17–20 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Vilà, C. et al. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc. Biol. Sci. 270, 91–97 (2003).

    Article 

    Google Scholar
     

  • Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071 (2017).

    Article 

    Google Scholar
     

  • Wisely, S. M., Ryder, O. A., Santymire, R. M., Engelhardt, J. F. & Novak, B. J. A road map for 21st century genetic restoration: gene pool enrichment of the black-footed ferret. J. Hered. 106, 581–592 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Safford, R. The Birds of Africa: The Malagasy Region: Madagascar, Seychelles, Comoros, Mascarenes (Bloomsbury Publishing, 2013).

  • Korody, M. L. et al. Rewinding extinction in the northern white rhinoceros: genetically diverse induced pluripotent stem cell bank for genetic rescue. Stem Cell Dev. 30, 177–189 (2021).

    Article 

    Google Scholar
     

  • Friedrich Ben-Nun, I. et al. Induced pluripotent stem cells from highly endangered species. Nat. Methods 8, 829–831 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hildebrandt, T. B. et al. Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun. 9, 2589 (2018).

    Article 

    Google Scholar
     

  • Tunstall, T. et al. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res. 28, 780–788 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wilder, A. P. et al. Genetic load and viability of a future restored northern white rhino population. Evolut. Appl. 17, e13683 (2024).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Harnessing eDNA technology to identify fish diversity and distribution in the...

    Sequence statistics and fish compositionIn this study, a total of 4,594,782 high-quality sequences (2,457,586 in April and 2,137,196 in September) were obtained after...
    Biodiversity
    7
    minutes

    Global divergence in plant and mycorrhizal fungal diversity hotspots

    Alpha diversity data layersWe used previously published global predictions of AM and ECM fungal richness from Van Nuland et al.26 and Mikryukov et...
    Biodiversity
    15
    minutes

    Here’s how you can make your garden a safe and biodiverse...

    Biodiversity is essential to mitigating and adapting to climate change, enhancing the resilience of ecosystems and safeguarding the ecological...
    Biodiversity
    4
    minutes

    Reconsidering space-for-time substitution in climate change ecology

    Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USAMargaret E. K. EvansDepartment of Wildland Resources, Utah State University, Logan, UT, USAPeter B....
    Biodiversity
    0
    minutes
    spot_imgspot_img