Shaw, R. E. et al. Global meta-analysis shows action is needed to halt genetic diversity loss. Nature 638, 704–710 (2025).
Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).
Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
Femerling, G. et al. Genetic load and adaptive potential of a recovered avian species that narrowly avoided extinction. Mol. Biol. Evol. 40, msad256 (2023).
Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA 118, e2104642118 (2021).
Matthews, T. J. et al. The global loss of avian functional and phylogenetic diversity from anthropogenic extinctions. Science 386, 55–60 (2024).
Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Letters 14, e12762 (2020).
Butchart, S. H. M., Stattersfield, A. J. & Collar, N. J. How many bird extinctions have we prevented? Oryx 40, 266–278 (2006).
Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
Prior, K. M., Adams, D. C., Klepzig, K. D. & Hulcr, J. When does invasive species removal lead to ecological recovery? Implications for management success. Biol. Invasions 20, 267–283 (2017).
Sutherland, W. J., Newton, I. & Green, R. Bird Ecology and Conservation (Oxford Univ. Press, 2004).
Marx, V. Can stem cells save the animals? Nat. Methods 22, 8–12 (2025).
Yin, K., Chung, M. Y., Lan, B., Du, F. K. & Chung, M. G. Plant conservation in the age of genome editing: opportunities and challenges. Genome Biol. 25, 279–279 (2024).
Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D. & Greig, D. Hybridization facilitates evolutionary rescue. Evol. Appl. 7, 1209–1217 (2014).
Burbrink, F. T. & Gehara, M. The biogeography of deep time phylogenetic reticulation. Syst. Biol. 67, 743–755 (2018).
Vedder, D. et al. Hybridization may aid evolutionary rescue of an endangered East African passerine. Evol. Appl. 15, 1177–1188 (2022).
Ongaro, L. & Huerta-Sanchez, E. A history of multiple Denisovan introgression events in modern humans. Nat. Genet. 56, 2612–2622 (2024).
Reilly, P. F., Tjahjadi, A., Miller, S. L., Akey, J. M. & Tucci, S. The contribution of Neanderthal introgression to modern human traits. Curr. Biol. 32, R970–R983 (2022).
Brown, R. M. et al. Range expansion and hybridization in round island petrels (Pterodroma spp.): evidence from microsatellite genotypes. Mol. Ecol. 19, 3157–3170 (2010).
Brown, R. M. et al. Phylogenetic relationships in Pterodroma petrels are obscured by recent secondary contact and hybridization. PLoS ONE 6, e20350 (2011).
Smith, D. et al. Extinct in the wild: the precarious state of Earth’s most threatened group of species. Science 379, eadd2889 (2023).
Lacy, R. C. Achieving true sustainability of zoo populations. Zoo. Biol. 32, 19–26 (2012).
Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2021).
Segelbacher, G. et al. New developments in the field of genomic technologies and their relevance to conservation management. Conserv. Genet. 23, 217–242 (2021).
Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131–131 (2018).
Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).
Cavill, E. L. et al. When birds of a feather flock together: severe genomic erosion and the implications for genetic rescue in an endangered island passerine. Evol. Appl. 17, e13739–e13739 (2024).
Hoffmann, A. A., Miller, A. D. & Weeks, A. R. Genetic mixing for population management: from genetic rescue to provenancing. Evol. Appl. 14, 634–652 (2020).
Leroy, G. et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol. Appl. 11, 1066–1083 (2017).
Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 108784 (2020).
Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).
van Oosterhout, C. Conservation genetics: 50 years and counting. Conserv. Lett. 14, e12789 (2020).
McLaughlin, C. M., Hinshaw, C., Sandoval-Arango, S., Zavala-Paez, M. & Hamilton, J. A. Redlisting genetics: towards inclusion of genetic data in IUCN Red List assessments. Conserv. Genet. 26, 213–223 (2025).
Jackson, H. A. et al. Genomic erosion in a demographically recovered bird species during conservation rescue. Conserv. Biol. 36, e13918 (2022).
Pinto, A. V., Hansson, B., Patramanis, I., Morales, H. E. & van Oosterhout, C. The impact of habitat loss and population fragmentation on genomic erosion. Conserv. Genet. 25, 49–57 (2023).
Mualim, K. S. et al. Genetic diversity loss in the Anthropocene will continue long after habitat destruction ends. Preprint at bioRxiv https://doi.org/10.1101/2024.10.21.619096 (2024).
Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).
Grossen, C. & Ramakrishnan, U. Genetic load. Curr. Biol. 34, R1216–R1220 (2024).
Dussex, N., Morales, H. E., Grossen, C., Dalén, L. & van Oosterhout, C. Purging and accumulation of genetic load in conservation. Trends Ecol. Evol. 38, 961–969 (2023).
Bertorelle, G. et al. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492–503 (2022).
Adams, P. E. et al. Slow recovery from inbreeding depression generated by the complex genetic architecture of segregating deleterious mutations. Mol. Biol. Evol. 39, msab330 (2022).
Fontsere, C. et al. Persistent genomic erosion in whooping cranes despite demographic recovery. Preprint at bioRxiv https://doi.org/10.1101/2024.12.12.628160 (2024).
Speak, S. A. et al. Genomics‐informed captive breeding can reduce inbreeding depression and the genetic load in zoo populations. Mol. Ecol. Resour. 24, e13967 (2024).
Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
Frankham, R. in Genetic Management of Fragmented Animal and Plant Populations, A1–A6 (Oxford Univ. Press, 2017).
Resende, P. S., Viana–Junior, A. B., Young, R. J. & de Azevedo, C. S. A global review of animal translocation programs. Anim. Biodivers. Conserv. https://doi.org/10.32800/abc.2020.43.0221 (2020).
Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11, e12412 (2018).
Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).
Willi, Y. et al. Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. Proc. Natl Acad. Sci. USA 119, e2105076119 (2022).
Bolton, R. L. et al. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. Reprod. Fertil. 3, R121–R146 (2022).
Soulé, M., Gilpin, M., Conway, W. & Foose, T. The millenium ark: how long a voyage, how many staterooms, how many passengers? Zoo. Biol. 5, 101–113 (1986).
Rogers, N. Museum drawers go digital. Science 352, 762–765 (2016).
Rohwer, V. G., Rohwer, Y. & Dillman, C. B. Declining growth of natural history collections fails future generations. PLoS Biol. 20, e3001613 (2022).
Raxworthy, C. J. & Smith, B. T. Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol. Evol. 36, 1049–1060 (2021).
Chemnick, L. G., Houck, M. L. & Ryder, O. A. in Conservation Genetics in the Age of Genomics (eds Amato, G., DeSalle, R., Ryder, O. A. & Rosenbaum, H. C.) 124–130 (Columbia Univ. Press, 2009).
Comizzoli, P. C-29: The pan-Smithsonian cryo-initiative-freezing for the future. Cryobiology 69, 509 (2014).
Chaplin-Kramer, R. et al. Wildlife’s contributions to people. Nat. Rev. Biodivers. 1, 68–81 (2025).
Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evol. 32, 97–107 (2017).
Kosch, T. A. et al. Genetic approaches for increasing fitness in endangered species. Trends Ecol. Evol. 37, 332–345 (2022).
Schwartz, M. K. et al. Principles for introducing new genes and species for conservation. Trends Ecol. Evol. 40, 296–307 (2025).
Phelps, M. P., Seeb, L. W. & Seeb, J. E. Transforming ecology and conservation biology through genome editing. Conserv. Biol. 34, 54–65 (2019).
Iverson, E. N. K. Conservation mitonuclear replacement: facilitated mitochondrial adaptation for a changing world. Evol. Appl. 17, e13642 (2024).
Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).
Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).
Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).
Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
Khalil, A. M. The genome editing revolution: review. J. Genet. Eng. Biotechnol. 18, 68 (2020).
Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).
Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).
Bak, R. O., Gomez-Ospina, N. & Porteus, M. H. Gene editing on center stage. Trends Genet. 34, 600–611 (2018).
Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).
Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2022).
Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2022).
Van Oosterhout, C. Mitigating the threat of emerging infectious diseases; a coevolutionary perspective. Virulence 12, 1288–1295 (2021).
Christmas, M. J. et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science 380, eabn3943 (2023).
Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).
Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).
Sandler, R. L., Moses, L. & Wisely, S. M. An ethical analysis of cloning for genetic rescue: case study of the black-footed ferret. Biol. Conserv. 257, 109118 (2021).
Hildebrandt, T. B. et al. The ART of bringing extinction to a freeze — history and future of species conservation, exemplified by rhinos. Theriogenology 169, 76–88 (2021).
Novak, B. J. et al. Towards practical conservation cloning: understanding the dichotomy between the histories of commercial and conservation cloning. Animals 15, 989 (2025).
Lanza, R. P. et al. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2, 79–90 (2000).
Loi, P. et al. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964 (2001).
Gómez, M. C. et al. Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cell 6, 247–258 (2004).
Kim, M. K. et al. Endangered wolves cloned from adult somatic cells. Cloning Stem Cell 9, 130–137 (2007).
Oh, H. J. et al. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–647 (2008).
Gómez, M. C. et al. Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cell 10, 469–484 (2008).
Novak, B. J. De-extinction. Genes 9, 548 (2018).
van de Lavoir, M.-C. et al. Germline transmission of genetically modified primordial germ cells. Nature 441, 766–769 (2006).
van de Lavoir, M.-C. et al. Interspecific germline transmission of cultured primordial germ cells. PLoS ONE 7, e35664 (2012).
Ballantyne, M. et al. Direct allele introgression into pure chicken breeds using sire dam surrogate (SDS) mating. Nat. Commun. 12, 659 (2021).
Powell, W. A., Newhouse, A. E. & Coffey, V. Developing blight-tolerant American chestnut trees. Cold Spring Harb. Perspect. Biol. 11, a034587 (2019).
Witek, K. et al. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nat. Plants 7, 198–208 (2021).
Zamudio, K. R., McDonald, C. A. & Belasen, A. M. High variability in infection mechanisms and host responses: a review of functional genomic studies of amphibian chytridiomycosis. Herpetologica 76, 189 (2020).
Wright, B. et al. Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Sci. Rep. 7, 423 (2017).
Silver, L. W. et al. Temporal loss of genome-wide and immunogenetic diversity in a near-extinct Parrot. Mol. Ecol. 34, e17746 (2025).
Calvin, K. et al. IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & and Romero, J.) https://www.ipcc.ch/report/ar6/syr/ (IPCC, 2023).
Hobman, E. V., Mankad, A., Carter, L. & Ruttley, C. Genetically engineered heat-resistant coral: an initial analysis of public opinion. PLoS ONE 17, e0252739 (2022).
van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
Smeds, L. & Ellegren, H. From high masked to high realized genetic load in inbred Scandinavian wolves. Mol. Ecol. 32, 1567–1580 (2022).
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).
Smith, J. M. & Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 23, 23–35 (1974).
Santiago, E. & Caballero, A. Effective size and polymorphism of linked neutral loci in populations under directional selection. Genetics 149, 2105–2117 (1998).
Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012).
Petit, J. D., Needham, M. D. & Howe, G. T. Cognitive and demographic drivers of attitudes toward using genetic engineering to restore American chestnut trees. For. Policy Econ. 125, 102385 (2021).
Bennett, J. R. et al. Spending limited resources on de-extinction could lead to net biodiversity loss. Nat. Ecol. Evol. 1, 53 (2017).
Donlan, J. De-extinction in a crisis discipline. Front. Biogeogr. 6, 25–28 (2014).
International Union for Conservation of Nature. Genetic Frontiers for Conservation: An Assessment of Synthetic Biology and Biodiversity Conservation: Synthesis and Key Messages (IUCN, 2019).
Gordon, D. R. et al. Responsible governance of gene editing in agriculture and the environment. Nat. Biotechnol. 39, 1055–1057 (2021).
Barnhill-Dilling, S. K. & Delborne, J. A. The genetically engineered American chestnut tree as opportunity for reciprocal restoration in Haudenosaunee communities. Biol. Conserv. 232, 1–7 (2019).
Sainsbury, A. W. & Vaughan‐Higgins, R. J. Analyzing disease risks associated with translocations. Conserv. Biol. 26, 442–452 (2012).
International Union for Conservation of Nature. Genetic Frontiers for Conservation: An Assessment of Synthetic Biology and Biodiversity Conservation: Technical Assessment (IUCN, 2019).
Molhuizen, T., Beumer, K. & Dorresteijn, I. Who to revive? Explaining charismatic species bias in the selection of de-extinction candidate species. Environ. Plan. E Nat. Space 8, 642–659 (2025).
Jones, C. G. in Studies of Mascarene Island Birds (ed. Diamond, A. W.) 208–300 (Cambridge Univ. Press, 1987).
Adams, N. E. & Edmands, S. Genomic recovery lags behind demographic recovery in bottlenecked populations of the Channel Island fox, Urocyon littoralis. Mol. Ecol. 32, 4151–4164 (2023).
Feng, Y. et al. Genome sequences and population genomics provide insights into the demographic history, inbreeding, and mutation load of two ‘living fossil’ tree species of Dipteronia. Plant. J. 117, 177–192 (2023).
Dehasque, M. et al. Temporal dynamics of woolly mammoth genome erosion prior to extinction. Cell 187, 3531–3540 (2024).
McBride, R. T., McBride, R. T., McBride, R. M. & McBride, C. E. Counting pumas by categorizing physical evidence. Southeast. Naturalist 7, 381–400 (2008).
Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11, 615–626 (2009).
Hedrick, P. W. Gene flow and genetic restoration: the Florida panther as a case study. Conserv. Biol. 9, 996–1007 (1995).
Onorato, D. P. et al. Multi-generational benefits of genetic rescue. Sci. Rep. 14, 17519 (2024).
Westemeier, R. L., Buhnerkempe, J. E., Edwards, W. R., Brawn, J. D. & Simpson, S. A. Parasitism of greater prairie-chicken nests by ring-necked pheasants. J. Wildl. Manag. 62, 854 (1998).
Bouzat, J. L. et al. Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv. Genet. 10, 191–201 (2008).
Liberg, O. et al. Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol. Lett. 1, 17–20 (2005).
Vilà, C. et al. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc. Biol. Sci. 270, 91–97 (2003).
Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071 (2017).
Wisely, S. M., Ryder, O. A., Santymire, R. M., Engelhardt, J. F. & Novak, B. J. A road map for 21st century genetic restoration: gene pool enrichment of the black-footed ferret. J. Hered. 106, 581–592 (2015).
Safford, R. The Birds of Africa: The Malagasy Region: Madagascar, Seychelles, Comoros, Mascarenes (Bloomsbury Publishing, 2013).
Korody, M. L. et al. Rewinding extinction in the northern white rhinoceros: genetically diverse induced pluripotent stem cell bank for genetic rescue. Stem Cell Dev. 30, 177–189 (2021).
Friedrich Ben-Nun, I. et al. Induced pluripotent stem cells from highly endangered species. Nat. Methods 8, 829–831 (2011).
Hildebrandt, T. B. et al. Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun. 9, 2589 (2018).
Tunstall, T. et al. Evaluating recovery potential of the northern white rhinoceros from cryopreserved somatic cells. Genome Res. 28, 780–788 (2018).
Wilder, A. P. et al. Genetic load and viability of a future restored northern white rhino population. Evolut. Appl. 17, e13683 (2024).