Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).
Kok, M. T. J. et al. Assessing ambitious nature conservation strategies in a below 2-degree and food-secure world. Biol. Conserv. 284, 110068 (2023).
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Phalan, B., Green, R. & Balmford, A. Closing yield gaps: perils and possibilities for biodiversity conservation. Phil. Trans. R. Soc. B 369, 20120285 (2014).
Prestele, R. et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Chang. Biol. 22, 3967–3983 (2016).
Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).
Balmford, A. Concentrating vs. spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).
Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).
Dotta, G., Phalan, B., Silva, T. W., Green, R. & Balmford, A. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America. Conserv. Biol. 30, 618–627 (2016).
Kamp, J. et al. Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J. Appl. Ecol. 52, 1578–1587 (2015).
Williams, D. R. et al. Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Glob. Chang. Biol. 23, 5260–5272 (2017).
Gilroy, J. J., Edwards, F. A., Medina Uribe, C. A., Haugaasen, T. & Edwards, D. P. Surrounding habitats mediate the trade-off between land-sharing and land-sparing agriculture in the tropics. J. Appl. Ecol. 51, 1337–1346 (2014).
Karp, D. S. et al. Remnant forest in Costa Rican working landscapes fosters bird communities that are indistinguishable from protected areas. J. Appl. Ecol. 56, 1839–1849 (2019).
Macchi, L. et al. Trade-offs between biodiversity and agriculture are moving targets in dynamic landscapes. J. Appl. Ecol. 57, 2054–2063 (2020).
Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).
Feniuk, C., Balmford, A. & Green, R. E. Land sparing to make space for species dependent on natural habitats and high nature value farmland. Proc. R. Soc. B 286, 20191483 (2019).
Finch, T. et al. Bird conservation and the land sharing–sparing continuum in farmland-dominated landscapes of lowland England. Conserv. Biol. 33, 1045–1055 (2019).
Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. 1, 1136–1145 (2017).
Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
Hatton, I. A., Mazzarisi, O., Altieri, A. & Smerlak, M. Diversity begets stability: sublinear growth and competitive coexistence across ecosystems. Science 383, eadg8488 (2024).
Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).
Guerrero, I. et al. Response of ground-nesting farmland birds to agricultural intensification across Europe: landscape and field level management factors. Biol. Conserv. 152, 74–80 (2012).
Winqvist, C. et al. Species’ traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. J. Insect Conserv. 18, 837–846 (2014).
Wurz, A. et al. Win–win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nat. Commun. 13, 4127 (2022).
Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5, 484–493 (2013).
Semenchuk, P. et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 13, 615 (2022).
Beckmann, M. et al. Effects of conventional land-use intensification on species richness and production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).
Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).
Sajjad, A., Ali, S. A. & Mustafa, F. M. Effect of drip irrigation on richness, abundance, and diversity of soil arthropods. Plant Bull. 1, 19–29 (2022).
Attwood, S. J., Maron, M., House, A. P. N. & Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob. Ecol. Biogeogr. 17, 585–599 (2008).
Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. B 279, 4772–4777 (2012).
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
Smart, S. M. et al. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B 273, 2659–2665 (2006).
Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).
Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).
Andren, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).
Shennan-Farpón, Y., Visconti, P. & Norris, K. Detecting ecological thresholds for biodiversity in tropical forests: knowledge gaps and future directions. Biotropica 53, 1276–1289 (2021).
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874 (2005).
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
Hoskins, A. J. et al. Downscaling land-use data to provide global 30″ estimates of five land-use classes. Ecol. Evol. 6, 3040–3055 (2016).
MacKay, D. J. Sustainable Energy – Without the Hot Air (Bloomsbury, 2016).
Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. Glob. Chang. Biol. 28, 797–815 (2022).
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
Outhwaite, C. L., Ortiz, A. M. D., Spooner, F. E. B., Dalin, C. & Newbold, T. Availability and proximity of natural habitat influence cropland biodiversity in forest biomes globally. Glob. Ecol. Biogeogr. 31, 1589–1602 (2022).
Batáry, P., Báldi, A., Kleijn, D. & Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc. R. Soc. B 278, 1894–1902 (2010).
Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).
Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).
Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M. & Benton, T. G. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers. Distrib. 21, 357–367 (2015).
Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).
Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 2902 (2021).
Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325 (2018).
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).
Rigal, S. et al. Farmland practices are driving bird population decline across Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).
Sutcliffe, L. M. E. et al. Harnessing the biodiversity value of central and eastern European farmland. Divers. Distrib. 21, 722–730 (2015).
Bennett, A. F., Hinsley, S. A., Bellamy, P. E., Swetnam, R. D. & Mac Nally, R. Do regional gradients in land-use influence richness, composition and turnover of bird assemblages in small woods? Biol. Conserv. 119, 191–206 (2004).
Tscharntke, T., Steffan-Dewenter, I., Kruess, A. & Thies, C. Characteristics of insect populations on habitat fragments: a mini review. Ecol. Res. 17, 229–239 (2002).
Bambaradeniya, C. N. B. & Amerasinghe, F. P. Biodiversity Associated with the Rice Field Agroecosystem in Asian Countries: A Brief Review (IWMI, 2004).
Elphick, C. S. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14, 181–191 (2000).
Kingsford, R. T., Basset, A. & Jackson, L. Wetlands: conservation’s poor cousins. Aquat. Conserv. 26, 892–916 (2016).
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
Quesnelle, P. E., Fahrig, L. & Lindsay, K. E. Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biol. Conserv. 160, 200–208 (2013).
Foley, J. A. Can we feed the world & sustain the planet? Sci. Am. 305, 60–65 (2011).
Egli, L., Meyer, C., Scherber, C., Kreft, H. & Tscharntke, T. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Glob. Chang. Biol. 24, 2212–2228 (2018).
Grass, I., Batáry, P. & Tscharntke, T. in Advances in Ecological Research Vol. 64 (eds Bohan, D. A. & Vanbergen, A. J.) 251–303 (Academic Press, 2021).
Schneider, J. M., Zabel, F., Schünemann, F., Delzeit, R. & Mauser, W. Global cropland could be almost halved: assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS One 17, e0263063 (2022).
Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).
Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).
Atkinson, J. et al. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: a global meta-analysis. Ecol. Lett. 25, 1725–1737 (2022).
Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).
Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).
Altman, D. G. & Bland, J. M. Generalisation and extrapolation. BMJ 317, 409–410 (1998).
Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).
Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).
Hudson, L. et al. The 2016 Release of the PREDICTS Database [SUPERSEDED] (Natural History Museum Data Portal, 2016); https://doi.org/10.5519/0066354
You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).
Global Spatially-Disaggregated Crop Production Statistics Data for 2000 Version 3.0.7 (International Food Policy Research Institute, 2019); https://doi.org/10.7910/DVN/A50I2T
Global Spatially-Disaggregated Crop Production Statistics Data for 2005 Version 3.2 (International Food Policy Research Institute and International Institute for Applied Systems Analysis, 2016); https://doi.org/10.7910/DVN/DHXBJX
Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0 (International Food Policy Research Institute, 2019); https://doi.org/10.7910/DVN/PRFF8V
You, L., Wood, S. & Wood-Sichra, U. Generating plausible crop distribution maps for sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agric. Syst. 99, 126–140 (2009).
Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).
Hoskins, A. et al. Global 30s Resolution Land Use for 2005 (CSIRO, 2016); https://doi.org/10.4225/08/56DCD9249B224
Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).
Rand, T. A., Tylianakis, J. M. & Tscharntke, T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614 (2006).
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).
Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).
Chown, S. L., van Rensburg, B. J., Gaston, K. J., Rodrigues, A. S. L. & van Jaarsveld, A. S. Energy, species richness, and human population size: conservation implications at a national scale. Ecol. Appl. 13, 1233–1241 (2003).
Luck, G. W., Smallbone, L., McDonald, S. & Duffy, D. What drives the positive correlation between human population density and bird species richness in Australia? Glob. Ecol. Biogeogr. 19, 673–683 (2010).
Williams, J. R., Jones, C. A., Kiniry, J. R. & Spanel, D. A. The EPIC crop growth model. Trans. ASAE 32, 497–0511 (1989).
Frank, S. et al. The dynamic soil organic carbon mitigation potential of European cropland. Glob. Environ. Change 35, 269–278 (2015).
Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).
Skalskỳ, R. et al. GEO-BENE Global Database for Bio-physical Modeling V. 1.0—Concepts, Methodologies and Data The GEO-BENE Database Report 58 (International Institute for Applied Systems Analysis, 2008).
Wood-Sichra, U., Joglekar, A. K. B. & You, L. Spatial Production Allocation Model (SPAM) 2005: Technical Documentation. HarvestChoice Working Paper (International Food Policy Research Institute International Science and Technology Practice and Policy Center, Univ. Minnesota, 2016).
Palmu, E., Ekroos, J., Hanson, H. I., Smith, H. G. & Hedlund, K. Landscape-scale crop diversity interacts with local management to determine ground beetle diversity. Basic Appl. Ecol. 15, 241–249 (2014).
Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Klein Goldewijk, K. History Database of the Global Environment 3.1 (Utrecht Univ., Faculty of Geosciences, 2023); https://public.yoda.uu.nl/geo/UU01/8K9D7F.html
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Hijmans, R. raster: geographic data analysis and modeling. R package version 3.6-23 (2023).
Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).
Stan Modeling Language Users Guide and Reference Manual – rstan Version 2.32.6 (Stan Development Team, 2024).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Newbold, T. predictsFunctions: functions for reading and processing the PREDICTS data. R package version 1.0 (2018).
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6 (2022).
Bürkner, P. C. Bayesian item response modeling in R with brms and Stan. J. Stat. Softw. 100, 1–54 (2021).
Newbold, T. PREDICTS site-level biodiversity data with estimates of community-average range size. figshare https://doi.org/10.6084/m9.figshare.7262732.v1 (2018).
Leclère, D. et al. Subsistence yields for maize, soybean, wheat and rice used for analysis in the study “Geography and availability of natural habitat determine whether cropland intensification or expansion is more detrimental to biodiversity”. figshare https://doi.org/10.6084/m9.figshare.25780953.v1 (2024).
Ceausu, S., Leclère, D. & Newbold, T. Figure 4. The projected effect of closing yield gaps on three biodiversity metrics: (a) local species richness, (b) total abundance and (c) relative abundance-weighted community-average range size (RCAR). figshare https://doi.org/10.6084/m9.figshare.28592318.v1 (2025).
Ceausu, S., Leclère, D. & Newbold, T. Figure 5. The difference in biodiversity metrics when comparing land expansion and intensification within the same agricultural landscape. figshare https://doi.org/10.6084/m9.figshare.28592387.v1 (2025).
Ceausu, S., Leclère, D. & Newbold, T. Datasets used for modelling the impact of land conversion/yield on biodiversity for the article “Geography and availability of natural habitat determine whether cropland intensification or expansion is more detrimental to biodiversity”. figshare https://doi.org/10.6084/m9.figshare.28592393.v1 (2025).