Geography and availability of natural habitat determine whether cropland intensification or expansion is more detrimental to biodiversity


  • Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kok, M. T. J. et al. Assessing ambitious nature conservation strategies in a below 2-degree and food-secure world. Biol. Conserv. 284, 110068 (2023).

    Article 

    Google Scholar
     

  • Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).

    Article 

    Google Scholar
     

  • Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Phalan, B., Green, R. & Balmford, A. Closing yield gaps: perils and possibilities for biodiversity conservation. Phil. Trans. R. Soc. B 369, 20120285 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prestele, R. et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Chang. Biol. 22, 3967–3983 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balmford, A. Concentrating vs. spreading our footprint: how to meet humanity’s needs at least cost to nature. J. Zool. 315, 79–109 (2021).

    Article 

    Google Scholar
     

  • Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dotta, G., Phalan, B., Silva, T. W., Green, R. & Balmford, A. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America. Conserv. Biol. 30, 618–627 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamp, J. et al. Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J. Appl. Ecol. 52, 1578–1587 (2015).

    Article 

    Google Scholar
     

  • Williams, D. R. et al. Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Glob. Chang. Biol. 23, 5260–5272 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gilroy, J. J., Edwards, F. A., Medina Uribe, C. A., Haugaasen, T. & Edwards, D. P. Surrounding habitats mediate the trade-off between land-sharing and land-sparing agriculture in the tropics. J. Appl. Ecol. 51, 1337–1346 (2014).

    Article 

    Google Scholar
     

  • Karp, D. S. et al. Remnant forest in Costa Rican working landscapes fosters bird communities that are indistinguishable from protected areas. J. Appl. Ecol. 56, 1839–1849 (2019).

    Article 

    Google Scholar
     

  • Macchi, L. et al. Trade-offs between biodiversity and agriculture are moving targets in dynamic landscapes. J. Appl. Ecol. 57, 2054–2063 (2020).

    Article 

    Google Scholar
     

  • Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Feniuk, C., Balmford, A. & Green, R. E. Land sparing to make space for species dependent on natural habitats and high nature value farmland. Proc. R. Soc. B 286, 20191483 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finch, T. et al. Bird conservation and the land sharing–sparing continuum in farmland-dominated landscapes of lowland England. Conserv. Biol. 33, 1045–1055 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. 1, 1136–1145 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hatton, I. A., Mazzarisi, O., Altieri, A. & Smerlak, M. Diversity begets stability: sublinear growth and competitive coexistence across ecosystems. Science 383, eadg8488 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerrero, I. et al. Response of ground-nesting farmland birds to agricultural intensification across Europe: landscape and field level management factors. Biol. Conserv. 152, 74–80 (2012).

    Article 

    Google Scholar
     

  • Winqvist, C. et al. Species’ traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. J. Insect Conserv. 18, 837–846 (2014).

    Article 

    Google Scholar
     

  • Wurz, A. et al. Win–win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nat. Commun. 13, 4127 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5, 484–493 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenchuk, P. et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 13, 615 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckmann, M. et al. Effects of conventional land-use intensification on species richness and production: a global meta-analysis. Glob. Chang. Biol. 25, 1941–1956 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sajjad, A., Ali, S. A. & Mustafa, F. M. Effect of drip irrigation on richness, abundance, and diversity of soil arthropods. Plant Bull. 1, 19–29 (2022).


    Google Scholar
     

  • Attwood, S. J., Maron, M., House, A. P. N. & Zammit, C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob. Ecol. Biogeogr. 17, 585–599 (2008).

    Article 

    Google Scholar
     

  • Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. B 279, 4772–4777 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar
     

  • Smart, S. M. et al. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B 273, 2659–2665 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andren, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).

  • Shennan-Farpón, Y., Visconti, P. & Norris, K. Detecting ecological thresholds for biodiversity in tropical forests: knowledge gaps and future directions. Biotropica 53, 1276–1289 (2021).

    Article 

    Google Scholar
     

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar
     

  • Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

  • Hoskins, A. J. et al. Downscaling land-use data to provide global 30″ estimates of five land-use classes. Ecol. Evol. 6, 3040–3055 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacKay, D. J. Sustainable Energy Without the Hot Air (Bloomsbury, 2016).

  • Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar
     

  • Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. Glob. Chang. Biol. 28, 797–815 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Outhwaite, C. L., Ortiz, A. M. D., Spooner, F. E. B., Dalin, C. & Newbold, T. Availability and proximity of natural habitat influence cropland biodiversity in forest biomes globally. Glob. Ecol. Biogeogr. 31, 1589–1602 (2022).

    Article 

    Google Scholar
     

  • Batáry, P., Báldi, A., Kleijn, D. & Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc. R. Soc. B 278, 1894–1902 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winter, M. et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA 106, 21721–21725 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M. & Benton, T. G. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Divers. Distrib. 21, 357–367 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 2902 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Article 

    Google Scholar
     

  • Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rigal, S. et al. Farmland practices are driving bird population decline across Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutcliffe, L. M. E. et al. Harnessing the biodiversity value of central and eastern European farmland. Divers. Distrib. 21, 722–730 (2015).

    Article 

    Google Scholar
     

  • Bennett, A. F., Hinsley, S. A., Bellamy, P. E., Swetnam, R. D. & Mac Nally, R. Do regional gradients in land-use influence richness, composition and turnover of bird assemblages in small woods? Biol. Conserv. 119, 191–206 (2004).

    Article 

    Google Scholar
     

  • Tscharntke, T., Steffan-Dewenter, I., Kruess, A. & Thies, C. Characteristics of insect populations on habitat fragments: a mini review. Ecol. Res. 17, 229–239 (2002).

    Article 

    Google Scholar
     

  • Bambaradeniya, C. N. B. & Amerasinghe, F. P. Biodiversity Associated with the Rice Field Agroecosystem in Asian Countries: A Brief Review (IWMI, 2004).

  • Elphick, C. S. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14, 181–191 (2000).

    Article 

    Google Scholar
     

  • Kingsford, R. T., Basset, A. & Jackson, L. Wetlands: conservation’s poor cousins. Aquat. Conserv. 26, 892–916 (2016).

    Article 

    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Quesnelle, P. E., Fahrig, L. & Lindsay, K. E. Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biol. Conserv. 160, 200–208 (2013).

    Article 

    Google Scholar
     

  • Foley, J. A. Can we feed the world & sustain the planet? Sci. Am. 305, 60–65 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Egli, L., Meyer, C., Scherber, C., Kreft, H. & Tscharntke, T. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation. Glob. Chang. Biol. 24, 2212–2228 (2018).

  • Grass, I., Batáry, P. & Tscharntke, T. in Advances in Ecological Research Vol. 64 (eds Bohan, D. A. & Vanbergen, A. J.) 251–303 (Academic Press, 2021).

  • Schneider, J. M., Zabel, F., Schünemann, F., Delzeit, R. & Mauser, W. Global cropland could be almost halved: assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS One 17, e0263063 (2022).

  • Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Article 

    Google Scholar
     

  • Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).

    Article 

    Google Scholar
     

  • Atkinson, J. et al. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: a global meta-analysis. Ecol. Lett. 25, 1725–1737 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altman, D. G. & Bland, J. M. Generalisation and extrapolation. BMJ 317, 409–410 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hudson, L. et al. The 2016 Release of the PREDICTS Database [SUPERSEDED] (Natural History Museum Data Portal, 2016); https://doi.org/10.5519/0066354

  • You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).

    Article 

    Google Scholar
     

  • Global Spatially-Disaggregated Crop Production Statistics Data for 2000 Version 3.0.7 (International Food Policy Research Institute, 2019); https://doi.org/10.7910/DVN/A50I2T

  • Global Spatially-Disaggregated Crop Production Statistics Data for 2005 Version 3.2 (International Food Policy Research Institute and International Institute for Applied Systems Analysis, 2016); https://doi.org/10.7910/DVN/DHXBJX

  • Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0 (International Food Policy Research Institute, 2019); https://doi.org/10.7910/DVN/PRFF8V

  • You, L., Wood, S. & Wood-Sichra, U. Generating plausible crop distribution maps for sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agric. Syst. 99, 126–140 (2009).

    Article 

    Google Scholar
     

  • Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

  • Hoskins, A. et al. Global 30s Resolution Land Use for 2005 (CSIRO, 2016); https://doi.org/10.4225/08/56DCD9249B224

  • Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    Article 

    Google Scholar
     

  • Rand, T. A., Tylianakis, J. M. & Tscharntke, T. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol. Lett. 9, 603–614 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).

    Article 

    Google Scholar
     

  • Chown, S. L., van Rensburg, B. J., Gaston, K. J., Rodrigues, A. S. L. & van Jaarsveld, A. S. Energy, species richness, and human population size: conservation implications at a national scale. Ecol. Appl. 13, 1233–1241 (2003).

    Article 

    Google Scholar
     

  • Luck, G. W., Smallbone, L., McDonald, S. & Duffy, D. What drives the positive correlation between human population density and bird species richness in Australia? Glob. Ecol. Biogeogr. 19, 673–683 (2010).

    Article 

    Google Scholar
     

  • Williams, J. R., Jones, C. A., Kiniry, J. R. & Spanel, D. A. The EPIC crop growth model. Trans. ASAE 32, 497–0511 (1989).

    Article 

    Google Scholar
     

  • Frank, S. et al. The dynamic soil organic carbon mitigation potential of European cropland. Glob. Environ. Change 35, 269–278 (2015).

    Article 

    Google Scholar
     

  • Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Policy 39, 5690–5702 (2011).

    Article 

    Google Scholar
     

  • Skalskỳ, R. et al. GEO-BENE Global Database for Bio-physical Modeling V. 1.0Concepts, Methodologies and Data The GEO-BENE Database Report 58 (International Institute for Applied Systems Analysis, 2008).

  • Wood-Sichra, U., Joglekar, A. K. B. & You, L. Spatial Production Allocation Model (SPAM) 2005: Technical Documentation. HarvestChoice Working Paper (International Food Policy Research Institute International Science and Technology Practice and Policy Center, Univ. Minnesota, 2016).

  • Palmu, E., Ekroos, J., Hanson, H. I., Smith, H. G. & Hedlund, K. Landscape-scale crop diversity interacts with local management to determine ground beetle diversity. Basic Appl. Ecol. 15, 241–249 (2014).

    Article 

    Google Scholar
     

  • Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article 

    Google Scholar
     

  • Klein Goldewijk, K. History Database of the Global Environment 3.1 (Utrecht Univ., Faculty of Geosciences, 2023); https://public.yoda.uu.nl/geo/UU01/8K9D7F.html

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Hijmans, R. raster: geographic data analysis and modeling. R package version 3.6-23 (2023).

  • Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).

    Article 

    Google Scholar
     

  • Stan Modeling Language Users Guide and Reference Manual – rstan Version 2.32.6 (Stan Development Team, 2024).

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar
     

  • Newbold, T. predictsFunctions: functions for reading and processing the PREDICTS data. R package version 1.0 (2018).

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6 (2022).

  • Bürkner, P. C. Bayesian item response modeling in R with brms and Stan. J. Stat. Softw. 100, 1–54 (2021).

  • Newbold, T. PREDICTS site-level biodiversity data with estimates of community-average range size. figshare https://doi.org/10.6084/m9.figshare.7262732.v1 (2018).

  • Leclère, D. et al. Subsistence yields for maize, soybean, wheat and rice used for analysis in the study “Geography and availability of natural habitat determine whether cropland intensification or expansion is more detrimental to biodiversity”. figshare https://doi.org/10.6084/m9.figshare.25780953.v1 (2024).

  • Ceausu, S., Leclère, D. & Newbold, T. Figure 4. The projected effect of closing yield gaps on three biodiversity metrics: (a) local species richness, (b) total abundance and (c) relative abundance-weighted community-average range size (RCAR). figshare https://doi.org/10.6084/m9.figshare.28592318.v1 (2025).

  • Ceausu, S., Leclère, D. & Newbold, T. Figure 5. The difference in biodiversity metrics when comparing land expansion and intensification within the same agricultural landscape. figshare https://doi.org/10.6084/m9.figshare.28592387.v1 (2025).

  • Ceausu, S., Leclère, D. & Newbold, T. Datasets used for modelling the impact of land conversion/yield on biodiversity for the article “Geography and availability of natural habitat determine whether cropland intensification or expansion is more detrimental to biodiversity”. figshare https://doi.org/10.6084/m9.figshare.28592393.v1 (2025).



  • Source link

    More From Forest Beat

    For many island species, the next tropical cyclone may be their...

    When a major cyclone tears through an island nation, all efforts rightly focus on saving human lives and restoring...
    Biodiversity
    3
    minutes

    Mapping benthic habitats in Bohai Bay, China

    Habitat classification schemeDeveloping a benthic habitat classification scheme is a fundamental step in benthic habitat mapping, providing a structured framework for organizing and...
    Biodiversity
    8
    minutes

    Effect of climate on traits of dominant and rare tree species...

    Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, SwitzerlandIris Hordijk, Chelsea Chisholm, Daniel S. Maynard & Thomas W. CrowtherWageningen University and Research, Wageningen,...
    Biodiversity
    15
    minutes

    CheloniansTraits: a comprehensive trait database of global turtles and tortoises

    Lyson, T. R. et al. Fossorial origin of the turtle shell. Current Biology 26, 1887–1894 (2016).CAS  PubMed  ...
    Biodiversity
    6
    minutes
    spot_imgspot_img