Global 1-km habitat distribution for endangered species and its spatial changes under future warming scenarios

[ad_1]

  • Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature based conservation approach: a global perspective. Biodiversity and Conservation 32, 3681–3701 (2023).


    Google Scholar
     

  • Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Elsen, P. R. et al. Accelerated shifts in terrestrial life zones under rapid climate change. Global Change Biology 28, 918–935 (2022).

    PubMed 

    Google Scholar
     

  • Beyer, R. M. & Manica, A. Historical and projected future range sizes of the world’s mammals, birds, and amphibians. Nature communications 11, 5633 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nature communications 11, 5071 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L., Yu, H., Sun, M. & Wang, Y. Coupled impacts of climate and land use changes on regional ecosystem services. Journal of Environmental Management 326, 116753 (2023).

    PubMed 

    Google Scholar
     

  • Sharma, A. K., Sharma, A. K., Sharma, M., Sharma, M. Assessment of land use change and climate change impact on biodiversity and environment. In: Environmental Pollution and Natural Resource Management. Springer (2022).

  • Harfoot, M. B. et al. Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nature Ecology & Evolution 5, 1510–1519 (2021).


    Google Scholar
     

  • Ridley, F. A., Hickinbotham, E. J., Suggitt, A. J., McGowan, P. J. & Mair, L. The scope and extent of literature that maps threats to species globally: a systematic map. Environmental Evidence 11, 26 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends in ecology & evolution 34, 977–986 (2019).


    Google Scholar
     

  • Di Marco, M., Watson, J. E., Possingham, H. P. & Venter, O. Limitations and trade‐offs in the use of species distribution maps for protected area planning. Journal of Applied ecology 54, 402–411 (2017).


    Google Scholar
     

  • Marsh, C. J. et al. The effect of sampling effort and methodology on range size estimates of poorly-recorded species for IUCN Red List assessments. Biodiversity and Conservation 32, 1105–1123 (2023).


    Google Scholar
     

  • Zhao, J., Yu, L., Newbold, T., Chen, X. Trends in habitat quality and habitat degradation in terrestrial protected areas. Conservation Biology, e14348 (2024).

  • Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proceedings of the National Academy of Sciences 119, e2117297119 (2022).


    Google Scholar
     

  • Jung, M. et al. A global map of terrestrial habitat types. Scientific data 7, 256 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lumbierres, M. et al. Area of Habitat maps for the world’s terrestrial birds and mammals. Scientific Data 9, 749 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends in ecology & evolution 27, 151–159 (2012).


    Google Scholar
     

  • Yang, C., Zhang, G., Li, Y., Zhang, X. & Dong, J. Differential influence on threatened vertebrates under land use and land cover change in China since the 21st century. Applied Geography 180, 103650 (2025).


    Google Scholar
     

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature climate change 9, 323–329 (2019).

    ADS 

    Google Scholar
     

  • Liu, J. et al. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landscape ecology 33, 341–352 (2018).


    Google Scholar
     

  • Della Rocca, F. & Milanesi, P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. Journal of Biogeography 47, 1427–1438 (2020).


    Google Scholar
     

  • Gomes, E. et al. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Science of The Total Environment 781, 146716 (2021).

    PubMed 

    Google Scholar
     

  • Liang, X. et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban Systems 85, 101569 (2021).


    Google Scholar
     

  • Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS biology 5, e157 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantyka‐Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta‐analysis. Global Change Biology 18, 1239–1252 (2012).

    ADS 

    Google Scholar
     

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nature climate change 5, 215–224 (2015).

    ADS 

    Google Scholar
     

  • Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation 187, 103–111 (2015).


    Google Scholar
     

  • Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nature ecology & evolution 1, 1129–1135 (2017).


    Google Scholar
     

  • Li, G. et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature communications 13, 1628 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, Q. et al. Impacts of urban expansion on natural habitats in global drylands. Nature Sustainability 5, 869–878 (2022).


    Google Scholar
     

  • Lu, Y. et al. Spatial variation in biodiversity loss across China under multiple environmental stressors. Science Advances 6, eabd0952 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, Q. et al. Impacts of global urban expansion on natural habitats undermine the 2050 vision for biodiversity. Resources, Conservation and Recycling 190, 106834 (2023).


    Google Scholar
     

  • Liu, Y., Lü, Y., Zhao, M. & Fu, B. Integrative analysis of biodiversity, ecosystem services, and ecological vulnerability can facilitate improved spatial representation of nature reserves. Science of the Total Environment 879, 163096 (2023).

    PubMed 

    Google Scholar
     

  • Zeng, Y., Senior, R. A., Crawford, C. L. & Wilcove, D. S. Gaps and weaknesses in the global protected area network for safeguarding at-risk species. Science Advances 9, eadg0288 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garden, J. G., O’Donnell, T. & Catterall, C. P. Changing habitat areas and static reserves: challenges to species protection under climate change. Landscape ecology 30, 1959–1973 (2015).


    Google Scholar
     

  • Yesuf, G. U., Brown, K. A., Walford, N. S., Rakotoarisoa, S. E. & Rufino, M. C. Predicting range shifts for critically endangered plants: Is habitat connectivity irrelevant or necessary? Biological Conservation 256, 109033 (2021).


    Google Scholar
     

  • Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta‐analysis. Ecology letters 14, 419–431 (2011).

    PubMed 

    Google Scholar
     

  • Li, F. & Park, Y. S. Habitat availability and environmental preference drive species range shifts in concordance with climate change. Diversity and Distributions 26, 1343–1356 (2020).


    Google Scholar
     

  • Niknaddaf, Z., Hemami, M.-R., Pourmanafi, S. & Ahmadi, M. An integrative climate and land cover change detection unveils extensive range contraction in mountain newts. Global Ecology and Conservation 48, e02739 (2023).


    Google Scholar
     

  • Zhang, T., Cheng, C. & Wu, X. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Scientific Data 10, 748 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng, J., Shen, S., Cheng, C. & Dai, K. A hybrid spatiotemporal convolution-based cellular automata model (ST-CA) for land-use/cover change simulation. International Journal of Applied Earth Observation and Geoinformation 110, 102789 (2022).


    Google Scholar
     

  • Geng, J., Cheng, C., Shen, S., Dai, K. & Zhang, T. STAPLE: A land use/-cover change model concerning spatiotemporal dependency and properties related to landscape evolution. Environmental Modelling & Software 178, 106059 (2024).


    Google Scholar
     

  • Senior, R. A. et al Global shortfalls in documented actions to conserve biodiversity. Nature, 1–5 (2024).

  • Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS Journal of Photogrammetry and Remote Sensing 87, 57–67 (2014).

    ADS 

    Google Scholar
     

  • Rathore, P., Roy, A. & Karnatak, H. Predicting the future of species assemblages under climate and land use land cover changes in Himalaya: A geospatial modelling approach. Climate Change Ecology 3, 100048 (2022).


    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • Lumbierres, M. et al A habitat class to land cover translation model for mapping Area of Habitat of terrestrial vertebrates. bioRxiv, 2021.2006. 2008.447053 (2021).

  • Lumbierres, M. et al. Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conservation Biology 36, e13851 (2022).

    PubMed 

    Google Scholar
     

  • Li, B. et al. Global 1-km habitat distribution for endangered species and its spatial changes under future warming scenarios. Available at: https://doi.org/10.6084/m9.figshare.27985538 (2025).

  • Belote, R. T. et al. Options for prioritizing sites for biodiversity conservation with implications for “30 by 30”. Biological Conservation 264, 109378 (2021).


    Google Scholar
     

  • Alhajeri, B. H. & Fourcade, Y. High correlation between species‐level environmental data estimates extracted from IUCN expert range maps and from GBIF occurrence data. Journal of Biogeography 46, 1329–1341 (2019).


    Google Scholar
     

  • Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: A call for caution. Global Ecology and Biogeography 26, 930–941 (2017).


    Google Scholar
     

  • Saran, S., Chaudhary, S. K., Singh, P., Tiwari, A. & Kumar, V. A comprehensive review on biodiversity information portals. Biodiversity and Conservation 31, 1445–1468 (2022).


    Google Scholar
     

  • Dahal, P. R., Lumbierres, M., Butchart, S. H., Donald, P. F. & Rondinini, C. A validation standard for area of habitat maps for terrestrial birds and mammals. Geoscientific Model Development 15, 5093–5105 (2022).

    ADS 

    Google Scholar
     

  • Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal Society B: Biological Sciences 366, 2633–2641 (2011).


    Google Scholar
     

  • Palacio, R. D., Negret, P. J., Velásquez‐Tibatá, J. & Jacobson, A. P. A data‐driven geospatial workflow to map species distributions for conservation assessments. Diversity and Distributions 27, 2559–2570 (2021).


    Google Scholar
     

  • Lintz, H. E., Gray, A. N. & McCune, B. Effect of inventory method on niche models: Random versus systematic error. Ecological informatics 18, 20–34 (2013).


    Google Scholar
     

  • Merow, C., Wilson, A. M. & Jetz, W. Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography 26, 243–258 (2017).


    Google Scholar
     

  • Linyucheva, A. & Kindlmann, P. A review of global land cover maps in terms of their potential use for habitat suitability modelling. European Journal of Environmental Sciences 11, 46–61 (2021).


    Google Scholar
     

  • [ad_2]

    Source link

    More From Forest Beat

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes

    Origin and crop type affect the biodiversity pressures of fruits and...

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Chapman, A....
    Biodiversity
    0
    minutes
    spot_imgspot_img