Global hotspots of butterfly diversity are threatened in a warming world


  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K. & Jetz, W. Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biol. 19, e3001336 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W. et al. Include biodiversity representation indicators in area-based conservation targets. Nat. Ecol. Evol. 6, 123–126 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie, J. F., Williams, S. & Garner, B. The decline of mammal functional and evolutionary diversity worldwide. Proc. Natl Acad. Sci. USA 118, e1921849118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voskamp, A. et al. Utilizing multi-objective decision support tools for protected area selection. One Earth 6, 1143–1156 (2023).

    Article 

    Google Scholar
     

  • Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).

    Article 

    Google Scholar
     

  • Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article 

    Google Scholar
     

  • The Assessment Report on Pollinators, Pollination and Food Production: Summary for Policymakers (IPBES, 2016).

  • Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article 

    Google Scholar
     

  • Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).

    Article 

    Google Scholar
     

  • Chan, W.-P. et al. Climate velocities and species tracking in global mountain regions. Nature https://doi.org/10.1038/s41586-024-07264-9 (2024).

  • La Sorte, F. A. & Jetz, W. Projected range contractions of montane biodiversity under global warming. Proc. Biol. Sci. 277, 3401–3410 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinkert, S. et al. Climate–diversity relationships underlying cross‐taxon diversity of the African fauna and their implications for conservation. Divers. Distrib. 10, 1330–1342 (2020).

    Article 

    Google Scholar
     

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. B 360, 339–357 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pinkert, S., Barve, V., Guralnick, R. & Jetz, W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database. Glob. Ecol. Biogeogr. 31, 830–839 (2022).

    Article 

    Google Scholar
     

  • Kawahara, A. Y. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat. Ecol. Evol. 7, 903–913 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinkert, S. & Zeuss, D. Thermal biology: melanin-based energy harvesting across the tree of life. Curr. Biol. 884, 887 (2018).

    Article 

    Google Scholar
     

  • Heidrich, L. et al. Noctuid and geometrid moth assemblages show divergent elevational gradients in body size and color lightness. Ecography 44, 1169–1179 (2021).

    Article 

    Google Scholar
     

  • Danks, H. V. in Insects at Low Temperature (eds Richard, E. L. Jr. & Denlinger, D. L.) 231–259 (Springer, 1991).

  • Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Pinkert, S. et al. Mobility costs and energy uptake mediate the effects of morphological traits on species’ distribution and abundance. Ecology 10, e03121 (2020).

    Article 

    Google Scholar
     

  • Chazot, N. et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 12, 5717 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Condamine, F. L. Limited by the roof of the world: mountain radiations of Apollo swallowtails controlled by diversity-dependence processes. Biol. Lett. 14, 20170622 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De-Silva, D. L., Elias, M., Willmott, K., Mallet, J. & Day, J. J. Diversification of clearwing butterflies with the rise of the Andes. J. Biogeogr. 43, 44–58 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Glerean, P., Deutsch, H., Morandini, C., Morin, L. & Huemer, P. Lepidoptera of the Prealpi Giulie natural park (Friuli Venezia Giulia, north-east Italy). Gortania Bot. Zool. 44, 29–72 (2022).


    Google Scholar
     

  • Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514 (1992).

    Article 

    Google Scholar
     

  • Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).

    Article 

    Google Scholar
     

  • Coelho, M. T. P. et al. The geography of climate and the global patterns of species diversity. Nature 622, 537–544 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkins, B. A. et al. Different evolutionary histories underlie congruent species richness gradients of birds and mammals: bird and mammal richness gradients. J. Biogeogr. 39, 825–841 (2012).

    Article 

    Google Scholar
     

  • Körner, C. & Spehn, E. A Humboldtian view of mountains. Science 365, 1061–1061 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography 42, 632–642 (2019).

    Article 

    Google Scholar
     

  • Wu, S. et al. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat. Commun. 10, 4554 (2019).

  • Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novella-Fernandez, R., Brandl, R., Pinkert, S., Zeuss, D. & Hof, C. Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology. Nat. Commun. 14, 8427 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, H. E. A provisional checklist of European butterfly larval foodplants. Nota Lepidopterol. 45, 139–167 (2022).

    Article 

    Google Scholar
     

  • Williams, J. N. Humans and biodiversity: population and demographic trends in the hotspots. Popul. Environ. 34, 510–523 (2013).

    Article 

    Google Scholar
     

  • Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. V., Jenkins, C. N. & Xu, W. Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proc. Natl Acad. Sci. USA 119, e2113416118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).

    Article 

    Google Scholar
     

  • Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 198 (2021).

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biber, M. F., Voskamp, A. & Hof, C. Potential effects of future climate change on global reptile distributions and diversity. Glob. Ecol. Biogeogr. 32, 519–534 (2023).

    Article 

    Google Scholar
     

  • Halsch, C. A. et al. Insects and recent climate change. Proc. Natl Acad. Sci. USA 118, e2002543117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Article 

    Google Scholar
     

  • Sandall, E. et al. A globally integrated structure of taxonomy supporting biodiversity science and conservation. Trends Ecol. Evol. 38, 1143–1153 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kawahara, A. Y. et al. Phylogenetics of moth-like butterflies (Papilionoidea: Hedylidae) based on a new 13-locus target capture probe set. Mol. Phylogenet. Evol. 127, 600–605 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aiello-Lammens, M. E. et al. spThin: Functions for spatial thinning of species occurrence records for use in ecological models. R package v.0.2.0. CRAN https://doi.org/10.32614/cran.package.spThin (2019).

  • Pinkert, S., Sica, Y. V., Winner, K. & Jetz, W. The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation. Ecography 2023, e06794 (2023).

    Article 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. N. et al. Data from: Climatologies at high resolution for the Earth’s land surface areas. Dryad 10.5061/dryad.kd1d4 (2018).

  • Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuanmu, M.-N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).

    Article 

    Google Scholar
     

  • Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamisch, A. Oscillayers: a dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Glob. Ecol. Biogeogr. 28, 1552–1560 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486 (2022).

    Article 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pebesma, E. et al. sp: Classes and methods for spatial data. R package v.1.6-1. CRAN https://doi.org/10.32614/cran.package.sp (2022).

  • Revell, L. J. phytools: Phylogenetic tools for comparative biology. R package v.1.5-1. CRAN https://doi.org/10.32614/cran.package.phytools (2017).

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar
     

  • Marsh, C. J. et al. Expert range maps of global mammal distributions harmonised to three taxonomic authorities. J. Biogeogr. 49, 979–992 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snethlage, M. A. et al. A hierarchical inventory of the world’s mountains for global comparative mountain science. Sci. Data 9, 149 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, 2013).

  • Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    Article 

    Google Scholar
     

  • Lu, M. & Jetz, W. Scale-sensitivity in the measurement and interpretation of environmental niches. Trends Ecol. Evol. 38, 554–567 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).

    Article 

    Google Scholar
     

  • Kass, J. et al. The global distribution of known and undiscovered ant biodiversity. Dryad https://doi.org/10.5061/dryad.wstqjq2pp (2022).

  • Pinkert, S., Farwig, N., Kawahara, A. Y. & Jetz, W. Global hotspots of butterfly diversity are threatened in a warming world. figshare https://doi.org/10.6084/m9.figshare.27926592 (2025).



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img