Global hotspots of mycorrhizal fungal richness are poorly protected

[ad_1]

  • Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol. 154, 791–795 (2002).

    PubMed 

    Google Scholar
     

  • van Der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed 

    Google Scholar
     

  • Hawkins, H. J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).

    PubMed 

    Google Scholar
     

  • Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).


    Google Scholar
     

  • Větrovský, T. et al. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high‐throughput sequencing metabarcoding studies. New Phytol. 240, 2151–2163 (2023).

    PubMed 

    Google Scholar
     

  • Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).


    Google Scholar
     

  • Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    PubMed 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    PubMed 

    Google Scholar
     

  • Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43, 2294–2303 (2011).

    CAS 

    Google Scholar
     

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed 

    Google Scholar
     

  • Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo, L. et al. Global patterns in endemicity and vulnerability of soil fungi. Global Change Biol. 28, 6696–6710 (2022).

    CAS 

    Google Scholar
     

  • Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).

    PubMed 

    Google Scholar
     

  • Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat. Commun. 13, 2208 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, J. et al. Stop ignoring map uncertainty in biodiversity science and conservation policy. Nat. Ecol. Evol. 6, 828–829 (2022).

    PubMed 

    Google Scholar
     

  • Albuquerque, F., Astudillo-Scalia, Y., Loyola, R. & Beier, P. Towards an understanding of the drivers of broad-scale patterns of rarity-weighted richness for vertebrates. Biodivers. Conserv. 28, 3733–3747 (2019).


    Google Scholar
     

  • Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Global Ecol. Biogeogr. 27, 125–141 (2018).


    Google Scholar
     

  • Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 13, 4683 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J. Veg. Sci. 31, 355–366 (2020).


    Google Scholar
     

  • Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? New Phytol. 228, 828–838 (2020).

    PubMed 

    Google Scholar
     

  • Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).


    Google Scholar
     

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    PubMed 

    Google Scholar
     

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L. in Biogeography of Mycorrhizal Symbiosis Vol. 230 (ed. Tedersoo, L.) 469–531 (Springer, 2017).

  • Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).

    PubMed 

    Google Scholar
     

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Hoogen, J., van Nuland, M. & Kumar, S. Data and code for: Global Hotspots of Mycorrhizal Fungal Richness are Poorly Protected. Zenodo https://doi.org/10.5281/zenodo.14871588 (2025).

  • Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikryukov, V. et al. Connecting the multiple dimensions of global soil fungal diversity. Sci. Adv. 9, eadj8016 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hicks Pries, C. E. et al. Differences in soil organic matter between EcM‐and AM‐dominated forests depend on tree and fungal identity. Ecology 104, e3929 (2023).

    PubMed 

    Google Scholar
     

  • Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    ADS 

    Google Scholar
     

  • Chaudhary, V. B., Nolimal, S., Sosa‐Hernández, M. A., Egan, C. & Kastens, J. Trait‐based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228, 238–252 (2020).

    CAS 

    Google Scholar
     

  • Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Global Ecol. Biogeogr. 30, 987–999 (2021b).


    Google Scholar
     

  • Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. 231, 447–459 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barron, E. Conservation of abundance: How fungi can contribute to rethinking conservation. Conserv. Soc. 21, 99–109 (2023).


    Google Scholar
     

  • Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senior, R. A. et al. Global shortfalls in documented actions to conserve biodiversity. Nature 630, 387–391 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Langhammer, P. F. et al. The positive impact of conservation action. Science 384, 453–458 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutz, S. et al. Global richness of arbuscular mycorrhizal fungi. Fungal Ecol. 74, 101407 (2025).


    Google Scholar
     

  • Tedersoo, L. & Lindahl, B. Fungal identification biases in microbiome projects. Environ. Microbiol. Rep. 8, 774–779 (2016).

    PubMed 

    Google Scholar
     

  • Yang, R. H. et al. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 13, 206428 (2018).


    Google Scholar
     

  • Bengtsson‐Palme, J. et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919 (2013).


    Google Scholar
     

  • Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).


    Google Scholar
     

  • Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).

    PubMed 

    Google Scholar
     

  • Bruns, T. D. & Taylor, J. W. Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351, 826–826 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).


    Google Scholar
     

  • Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, s13742-016 (2016).


    Google Scholar
     

  • Yan, D. et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 217, 113–120 (2018).


    Google Scholar
     

  • Usher, M. B. in Wildlife Conservation Evaluation (ed. Usher, M. B.) 3–44 (Chapman & Hall, 1986).

  • Albuquerque, F. & Beier, P. Predicted rarity‐weighted richness, a new tool to prioritize sites for species representation. Ecol. Evol. 6, 8107–8114 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • van den Hoogen, J. et al. A global database of soil nematode abundance and functional group composition. Sci. Data 7, 103 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrando-Moraira, S. et al. Climate Stability Index maps, a global high resolution cartography of climate stability from Pliocene to 2100. Sci. Data 9, 48 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 global biomass carbon map for the year 2000. ESS-DIVE https://doi.org/10.15485/1463800 (2008).

  • Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 23, 1031–1045 (2014).


    Google Scholar
     

  • Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24, 1329–1339 (2015).


    Google Scholar
     

  • Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol. 237, 1432–1445 (2023).

    PubMed 

    Google Scholar
     

  • Trabucco, A. & Zomer, R. J. Global aridity index and potential evapo-transpiration (ET0) climate database v2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadoux, A. M. C., Heuvelink, G. B., De Bruin, S. & Brus, D. J. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Modell. 457, 109692 (2021).


    Google Scholar
     

  • Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).


    Google Scholar
     

  • Milà, C., Mateu, J., Pebesma, E. & Meyer, H. Nearest neighbour distance matching leave‐one‐out cross‐validation for map validation. Methods Ecol. Evol. 13, 1304–1316 (2022).


    Google Scholar
     

  • Linnenbrink, J., Milà, C., Ludwig, M. & Meyer, H. kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation. Geosci. Model Dev. 17, 5897–5912 (2024).


    Google Scholar
     

  • Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapov, A. M. et al. Globally invariant metabolism but density–diversity mismatch in springtails. Nat. Commun. 14, 674 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput. Geosci. 35, 1711–1721 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Parry J. sfdep: Spatial Dependence for Simple Features. R package version 0.2.3 https://CRAN.R-project.org/package=sfdep (2023).

  • Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    ADS 

    Google Scholar
     

  • Dray S. et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-21 https://CRAN.R-project.org/package=adespatial (2023).

  • Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2018).

  • Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    ADS 

    Google Scholar
     

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS 

    Google Scholar
     

  • Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. 6, 1423–1437 (2022).

    PubMed 

    Google Scholar
     

  • The IUCN Red List of Threatened Species Version 2022-2 (IUCN, 2022); https://www.iucnredlist.org.

  • [ad_2]

    Source link

    More From Forest Beat

    Global 1-km habitat distribution for endangered species and its spatial changes...

    Wudu, K., Abegaz, A., Ayele, L. & Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature...
    Biodiversity
    7
    minutes

    Italian still life paintings as a resource for reconstructing past Mediterranean...

    We have explored the historical representation of aquatic resources in Italian still-life paintings as an indicator of past aquatic socio-ecosystems. In this study,...
    Biodiversity
    17
    minutes

    Trait mediation explains decadal distributional shifts for a wide range of...

    Bell, J. R., Blumgart, D. & Shortall, C. R. Are insects declining and at what rate? An analysis of standardised, systematic catches of...
    Biodiversity
    13
    minutes

    Why are there large gaps in the British distribution of Common...

    Back in mid-April, Karin and I spent a long weekend in the New Forest, exploring the walking trails around the village of Brockenhurst...
    Biodiversity
    3
    minutes
    spot_imgspot_img