Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. https://doi.org/10.1038/nrg.2016.58 (2016).
Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89, S108–S122 (2008).
Osorio-Olvera, L., Soberón, J. & Falconi, M. On population abundance and niche structure. Ecography 42, 1415–1425 (2019).
Lira-Noriega, A. & Manthey, J. D. Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68, 1082–1093 (2014).
Martínez-Meyer, E., Díaz-Porras, D., Peterson, A. T. & Yáñez-Arenas, C. Ecological niche structure and rangewide abundance patterns of species. Biol. Lett. 9, 20120637 (2013).
Ochoa-Zavala, M. et al. Reduction of genetic variation When far from the niche centroid: prediction for mangrove species. Front. Conserv. Sci. 2, https://doi.org/10.3389/fcosc.2021.795365 (2022).
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
De Kort, H. et al. Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat. Commun. 12, 516 (2021).
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).
Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. B: Biol. Sci. 359, 183–195 (2004).
Assis, J., Serrão, E. A., Claro, B., Perrin, C. & Pearson, G. A. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol. Ecol. 23, 2797–2810 (2014).
Neiva, J. et al. Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change 279–308 (Springer, 2016).
Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x (2008).
Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).
Vásquez, C., Quiñones, R. A., Brante, A. & Hernández-Miranda, E. Genetic diversity and resilience in benthic marine populations. Rev. Chil. Historia Nat. 96, 4 (2023).
Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. 8, 1851 (2018).
Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).
Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 2557 (2020).
Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 692 (2020).
Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).
Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. Status and trends for the world’s Kelp forests. in World Seas: an Environmental Evaluation, 57–78 (Elsevier Ltd., 2019).
Eger, A. M. et al. The value of ecosystem services in global marine kelp forests. Nat. Commun. 14, (2023).
Convention on Biological Diversity. Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity at Its Tenth Meeting. Decision X/2. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets. Available at: https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-02-en.pdf (2010).
Neiva, J. et al. Genes left behind: climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS One 10, e0131530 (2015).
Song, X. H. et al. Climate-induced range shifts shaped the present and threaten the future genetic variability of a marine brown alga in the Northwest Pacific. Evol. Appl 14, 1867–1879 (2021).
Figuerola-Ferrando, L. et al. Global patterns and drivers of genetic diversity among marine habitat-forming species. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13685 (2023).
Assis, J. et al. Past climate changes and strong oceanographic barriers structured low-latitude genetic relics for the golden kelp Laminaria ochroleuca. J. Biogeogr. 45, 2326–2336 (2018).
Bringloe, T. T. et al. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39, 281–321 (2020).
Gouvêa, L., Fragkopoulou, E., Legrand, T., Serrão, E. A. & Assis, J. Range map data of marine ecosystem structuring species under global climate change. Data Brief. 52, 110023 (2024).
Neiva, J., Assis, J., Fernandes, F., Pearson, G. A. & Serrão, E. A. Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. J. Biogeogr. 41, 1137–1148 (2014).
Assis, J. et al. High and distinct range-edge genetic diversity despite local bottlenecks. PLoS One 8, 1–11 (2013).
Assis, J. et al. Past climate-driven range shifts structuring intraspecific biodiversity levels of the giant kelp (Macrocystis pyrifera) at global scales. Sci. Rep. 13, 12046 (2023).
Fragkopoulou, E. et al. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 31, 636–648 (2022).
Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).
Zimmerman, S. J., Aldridge, C. L. & Oyler-Mccance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genom. 21, 382 (2020).
Borah, R. et al. Genetic diversity and population structure assessment using molecular markers and SPAR approach in Illicium griffithii, a medicinally important endangered species of Northeast India. J. Genet. Eng. Biotechnol. 19, 118 (2021).
Gloss, A. D., Steiner, M. C., Novembre, J. & Bergelson, J. The design of mapping populations: Impacts of geographic scale on genetic architecture and mapping efficacy for defense and immunity. Curr. Opin. Plant Biol. 74. https://doi.org/10.1016/j.pbi.2023.102399 (2023).
Aguirre-Liguori, J. A., Luna-Sánchez, J. A., Gasca-Pineda, J. & Eguiarte, L. E. Evaluation of the minimum sampling design for population genomic and microsatellite studies: an analysis based on wild maize. Front. Genet. 11, 870 (2020).
Procheş, Ş., Watkeys, M. K., Ramsay, L. F. & Cowling, R. M. Why we should be looking for longitudinal patterns in biodiversity. Front. Ecol. Evol. 11. https://doi.org/10.3389/fevo.2023.1032827 (2023).
Nielsen, E. S., Beger, M., Henriques, R. & von der Heyden, S. Neither historical climate nor contemporary range fully explain the extant patterns of molecular diversity in marine species. J. Biogeogr. 48, 2629–2644 (2021).
Legrand, T. et al. Unravelling the role of oceanographic connectivity in the distribution of genetic diversity of marine forests at the global scale. Glob. Ecol. Biogeogr. 33, e13857 (2024).
Assis, J., Araújo, M. B. & Serrão, E. A. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob. Chang. Biol. 24, e55–e66 (2017).
Provan, J. The effects of past, present and future climate change on range-wide genetic diversity in northern North Atlantic marine species. Front. Biogeogr. 5, 60–66 (2013).
Bringloe, T. T., Verbruggen, H. & Saunders, G. W. Unique biodiversity in Arctic marine forests is shaped by diverse recolonization pathways and far northern glacial refugia. Proc. Natl. Acad. Sci. USA 117, 22590–22596 (2020).
Neiva, J. et al. Trans-Arctic asymmetries, melting pots and weak species cohesion in the low-dispersal amphiboreal seaweed Fucus distichus. Front. Ecol. Evol. 12, 1356987 (2024).
Neiva, J. et al. Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Sci. Rep. 8, 1112 (2018).
Vieira, C. et al. Global biogeography and diversification of a group of brown seaweeds (Phaeophyceae) driven by clade-specific evolutionary processes. J. Biogeogr. https://doi.org/10.1111/jbi.14047 (2021).
Yip, Z. T., Quek, R. Z. B. & Huang, D. Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). J. Phycol. 56, 300–309 (2020).
Clark, R. & Pinsky, M. Global patterns of genetic diversity in marine fishes. Authorea https://doi.org/10.22541/au.168726266.68173061/v1 (2023).
Skrbinšek, T. et al. Using a reference population yardstick to calibrate and compare genetic diversity reported in different studies: an example from the brown bear. Heredity 109, 299–305 (2012).
Assis, J. et al. Ocean currents shape the genetic structure of a kelp in southwestern Africa. J. Biogeogr. 49, 822–835 (2022).
Thomson, A. I. et al. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol. Appl. 14, 1497–1518 (2021).
Convention on Biological Diversity. Draft of the Post-2020 Global Biodiversity Framework. Accessed at: https://www.cbd.int/doc/c/409e/19ae/369752b245f05e88f760aeb3/wg2020-05-l-02-en.pdf (2022).
Andrello, M., Manel, S., Vilcot, M., Xuereb, A. & D’Aloia, C. C. Benefits of genetic data for spatial conservation planning in coastal habitats. Cambridge Prisms: Coast. Futures 1–38 https://doi.org/10.1017/cft.2023.16 (2023).
Andrello, M. et al. Evolving spatial conservation prioritization with intraspecific genetic data. Trends Ecol. Evol. 37, 553–564 (2022).
Magris, R. A. et al. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv. Lett. 11, 1–10 (2018).
Abecasis, D., Fragkopoulou, E., Claro, B. & Assis, J. Biophysical modelling and graph theory identify key connectivity hubs in the Mediterranean marine reserve network. Front. Mar. Sci. 9, 1000687 (2023).
Assis, J. et al. Weak biodiversity connectivity in the European network of no-take marine protected areas. Sci. Total Environ. 773, 145664 (2021).
Reynolds, L. K., McGlathery, K. J. & Waycott, M. Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS One 7, e38397 (2012).
Wood, G. et al. Using genomics to design and evaluate the performance of underwater forest restoration. J. Appl. Ecol. 57, 1988–1998 (2020).
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
Gonzalez, S. T., Alberto, F. & Molano, G. Whole-genome sequencing distinguishes the two most common giant kelp ecomorphs. Evolution 77, 1354–1369 (2023).
Gonzalez, S. T. & Raimondi, P. T. Experimental assessment of environmental versus genetic influences on Macrocystis morphology. Ecosphere 15, e4959 (2024).
Schiel, D. R. & Foster, M. S. Introduction to giant kelp forests worldwide in the biology and ecology of giant Kelp forests. https://doi.org/10.1525/j.ctt14btfvw.6 (2015)
Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
Elith, J. & Leathwick, J. Boosted regression trees for ecological modeling. R documentation. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3fa2b8826c881d732169995869b9d356c6996029 (2017).
Hofner, B., Müller, J. & Hothorn, T. Monotonicity-constrained species distribution models. Ecology 92, 1895–1901 (2011).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Pessarrodona, A. et al. Global seaweed productivity. Sci. Adv. 8, 2465 (2022).
Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. N.Z. J. Stat. 46, 325–347 (2004).
Guisan, A. & Rahbek, C. SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr. 38, 1433–1444 (2011).
Fragkopoulou, E. et al. Marine biodiversity exposed to prolonged and intense subsurface heatwaves. Nat. Clim. Chang. 13, 1114–1121 (2023).
R Development Core Team, 2018. A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2021).
Fragkopoulou, E. et al. Global intraspecific diversity of marine forest of brown macroalgae predicted by past climate conditions. Figshare. https://doi.org/10.6084/m9.figshare.25713651 (2025).