Global scale high-resolution habitat suitability modeling of avifauna providing pollination service (sunbirds, Nectariniidae)


  • Hassan, R. M., Scholes, R. J., Ash, N., Ecosystem Assessment, M., Trends Working, G. & C. & Ecosystems and Human well-being: Current State and Trends : Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment. xxi, 917 Pages: Illustrations (some Color), maps (some Color) ; 28 cm. (Island, 2005).

  • Gazzea, E., Batáry, P. & Marini, L. Global meta-analysis shows reduced quality of food crops under inadequate animal pollination. Nat. Commun. 14, 4463. https://doi.org/10.1038/s41467-023-40231-y (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulyshen, M., Urban-Mead, K. R., Dorey, J. B. & Rivers, J. W. Forests are critically important to global pollinator diversity and enhance pollination in adjacent crops. Biol. Rev. 98, 1118–1141. https://doi.org/10.1111/brv.12947 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Aziz, S. A. et al. The critical importance of Old World Fruit bats for healthy ecosystems and economies. Front. Ecol. Evol. 9 (2021).

  • Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front. Ecol. Environ. 16, 82–90. https://doi.org/10.1002/fee.1763 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2006).

  • Newmark, W. D., Mkongewa, V. J., Amundsen, D. L. & Welch, C. African sunbirds predominantly pollinate plants useful to humans. Condor 122, duz070. https://doi.org/10.1093/condor/duz070 (2020).

    Article 

    Google Scholar
     

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kearns, C. A., Inouye, D. W. & Pollinators Flowering Plants, and Conservation Biology. BioScience 47, 297–307. https://doi.org/10.2307/1313191 (1997).

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Global trends in the Status of Bird and Mammal pollinators. Conserv. Lett. 8, 397–403. https://doi.org/10.1111/conl.12162 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5, 1453–1461. https://doi.org/10.1038/s41559-021-01534-9 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Whelan, C. J., Şekercioğlu, Ç. H. & Wenny, D. G. Why birds matter: from economic ornithology to ecosystem services. J. Ornithol. 156, 227–238. https://doi.org/10.1007/s10336-015-1229-y (2015).

    Article 

    Google Scholar
     

  • BirdLife International. (2021).

  • Whitehead, K. J. The Functional role of Birds as Pollinators in Southern Cape Fynbos. (University of KwaZulu-Natal, 2018).

  • Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: with Applications in R. (Cambridge University Press, 2017).

  • Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392. https://doi.org/10.1111/j.1365-2664.2006.01164.x (2006).

    Article 
    MATH 

    Google Scholar
     

  • Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. W. Paleodistribution modeling in archaeology and paleoanthropology. Q. Sci. Rev. 110, 1–14. https://doi.org/10.1016/j.quascirev.2014.12.015 (2015).

    Article 

    Google Scholar
     

  • Di Febbraro, M. et al. Different facets of the same niche: integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. Glob. Change Biol. 29, 5509–5523. https://doi.org/10.1111/gcb.16901 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Rehan, M. et al. Application of species distribution models to estimate and manage the Asiatic black bear (Ursus thibetanus) habitat in the Hindu Kush Mountains, Pakistan. Eur. J. Wildl. Res. 70, 62. https://doi.org/10.1007/s10344-024-01806-2 (2024).

    Article 

    Google Scholar
     

  • Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158. https://doi.org/10.1016/j.tree.2007.11.005 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, T. Y., Walther, B. A., Chen, Y. H., Lin, R. S. & Lee, P. F. Hotspot analysis of Taiwanese breeding birds to determine gaps in the protected area network. Zoological Stud. 52, 29. https://doi.org/10.1186/1810-522X-52-29 (2013).

    Article 

    Google Scholar
     

  • de Carvalho, D. L. et al. Delimiting priority areas for the conservation of endemic and threatened neotropical birds using a niche-based gap analysis. PLOS ONE 12, e0171838. https://doi.org/10.1371/journal.pone.0171838 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, M. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Ind. 97, 159–164. https://doi.org/10.1016/j.ecolind.2018.10.003 (2019).

    Article 

    Google Scholar
     

  • Ramírez-Albores, J. E., Prieto-Torres, D. A., Gordillo-Martínez, A. & Sánchez-Ramos, L. E. Navarro-Sigüenza, A. G. insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. Divers. Distrib. 27, 18–33. https://doi.org/10.1111/ddi.13153 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Campbell, C. E., Jones, D. N., Awasthy, M., Castley, J. G. & Chauvenet, A. L. M. which birds have the most to lose? An analysis of bird species’ feeding habitat in changing Australian landscapes. Biodivers. Conserv. 33, 2867–2883. https://doi.org/10.1007/s10531-024-02890-1 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hotta, M. et al. Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan’s northern Alps. BMC Ecol. 19, 23. https://doi.org/10.1186/s12898-019-0238-8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L., Liao, J., Wu, Y. & Zhang, Y. Breeding range shift of the red-crowned crane (Grus japonensis) under climate change. PLOS ONE 15, e0229984. https://doi.org/10.1371/journal.pone.0229984 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheykhi Ilanloo, S. et al. Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near threatened avian scavenger. Avian Biol. Res. 14, 18–26. https://doi.org/10.1177/1758155920962750 (2020).

    Article 

    Google Scholar
     

  • Lavers, J. L., Miller, M. G. R., Carter, M. J., Swann, G. & Clarke, R. H. Predicting the spatial distribution of a Seabird Community to identify Priority Conservation Areas in the Timor Sea. Conserv. Biol. 28, 1699–1709. https://doi.org/10.1111/cobi.12324 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sala, O. E. et al. Global biodiversity scenarios for the Year 2100. Science 287, 1770–1774. https://doi.org/10.1126/science.287.5459.1770 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092. https://doi.org/10.1038/nplants.2016.92 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gérard, M., Vanderplanck, M., Wood, T. & Michez, D. Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci. 4, 77–86. https://doi.org/10.1042/ETLS20190139 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788. https://doi.org/10.1016/j.scitotenv.2021.145788 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Remolina-Figueroa, D. et al. Together forever? Hummingbird-plant relationships in the face of climate warming. Clim. Change 175, 2. https://doi.org/10.1007/s10584-022-03447-3 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying Priority areas for Conservation: A Global Assessment for Forest-Dependent Birds. PLOS ONE 6, e29080. https://doi.org/10.1371/journal.pone.0029080 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • T Brum, F. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. 114, 7641–7646. https://doi.org/10.1073/pnas.1706461114 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nori, J., Loyola, R. & Villalobos, F. Priority areas for conservation of and research focused on terrestrial vertebrates. Conserv. Biol. 34, 1281–1291. https://doi.org/10.1111/cobi.13476 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461. https://doi.org/10.1038/s41467-020-18230-0 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231. https://doi.org/10.1111/geb.13297 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Li, G. et al. Identifying conservation priority areas for gymnosperm species under climate changes in China. Biol. Conserv. 253, 108914. https://doi.org/10.1016/j.biocon.2020.108914 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Bosso, L. et al. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Ecol. Inf. 79, 102402. https://doi.org/10.1016/j.ecoinf.2023.102402 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Visser, M. E. & Sanz, J. J. Solar activity affects avian timing of reproduction. Biol. Lett. 5, 739–742. https://doi.org/10.1098/rsbl.2009.0429 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gonçalves, G. S. R., Cerqueira, P. V., Brasil, L. S. & Santos, M. P. D. The role of climate and environmental variables in structuring bird assemblages in the seasonally dry Tropical forests (SDTFs). PLOS ONE 12, e0176066. https://doi.org/10.1371/journal.pone.0176066 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, B., Mackowski, C., Schoer, L. & Tweedie, T. Flowering phenology of myrtaceous trees and their relation to climatic, environmental and disturbance variables in northern New South Wales. Austral Ecol. 25, 160–178. https://doi.org/10.1046/j.1442-9993.2000.01009.x (2000).

    Article 
    MATH 

    Google Scholar
     

  • Allan, J. R. et al. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 17, e3000158. https://doi.org/10.1371/journal.pbio.3000158 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Buonincontri, M. P. et al. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses. Sci. Total Environ. 877, 162893. https://doi.org/10.1016/j.scitotenv.2023.162893 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan, S. N. et al. Human-induced disturbances Influence on Bird communities of Coastal forests in Eastern Tanzania. Curr. J. Appl. Sci. Technol. 3, 48–64. https://doi.org/10.9734/BJAST/2014/2200 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Fraissinet, M. et al. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landscape Ecol. 38, 293–305. https://doi.org/10.1007/s10980-022-01550-5 (2023).

    Article 

    Google Scholar
     

  • Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences 110, E2602-E2610. https://doi.org/10.1073/pnas.1302251110 (2013).

  • Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071. https://doi.org/10.1038/s41467-020-18779-w (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kafash, A., Ashrafi, S. & Yousefi, M. Biogeography of bats in Iran: Mapping and disentangling environmental and historical drivers of bat richness. J. Zoological Syst. Evolutionary Res. 59, 1546–1556. https://doi.org/10.1111/jzs.12520 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Yousefi, M., Jouladeh-Roudbar, A. & Kafash, A. Mapping endemic freshwater fish richness to identify high-priority areas for conservation: an ecoregion approach. Ecol. Evol. 14, e10970. https://doi.org/10.1002/ece3.10970 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler, D. W. & Billerman, S. M. and I. J. Lovette (ed Cornell Lab of Ornithology)Ithaca, NY, USA. (2020).

  • Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L. & Jetz, W. Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography 44, 640–652. https://doi.org/10.1111/ecog.05119 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in Evolutionary Time. Science 285, 1265–1267. https://doi.org/10.1126/science.285.5431.1265 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Porto, R. G. et al. Pollination ecosystem services: a comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442. https://doi.org/10.1007/s12571-020-01043-w (2020).

    Article 
    MATH 

    Google Scholar
     

  • GBIF. (2021).

  • Chamberlain, S., Ram, K. & Hart, T. (2019).

  • DIVAGIS: versión 7.5. Lizard Tech, Inc. and the University of California, (2012).

  • Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Seavy, N. E. Physiological correlates of habitat association in East African sunbirds (Nectariniidae). J. Zool. 270, 290–297. https://doi.org/10.1111/j.1469-7998.2006.00138.x (2006).

    Article 

    Google Scholar
     

  • Nicolaï, M. P. J. et al. Ecological, genetic and geographical divergence explain differences in colouration among sunbird species (Nectariniidae). Ecol. Evol. 14, e11427. https://doi.org/10.1002/ece3.11427 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar
     

  • Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. (2008).

  • Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067. https://doi.org/10.1038/sdata.2016.67 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558. https://doi.org/10.1038/ncomms12558 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists. (Cambridge University Press, 2002).

  • Package. ‘usdm’. Uncertainty analysis for species distribution models Wien. (2017).

  • R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Elith*, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhao, G. et al. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Ind. 132, 108256. https://doi.org/10.1016/j.ecolind.2021.108256 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Cobos, M. E., Peterson, A. T. & Barve, N. Osorio-Olvera, L. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Swets, J. A. Measuring the Accuracy of Diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Olson, D. M. et al. Terrestrial ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[ (2001). 0933:TEOTWA]2.0.CO;2.

    Article 
    MATH 

    Google Scholar
     

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. 4, 1–9 (2001).



  • Source link

    More From Forest Beat

    Butterflies declined by 22% in just 2 decades across the US...

    If the joy of seeing butterflies seems increasingly rare these days, it isn’t your imagination. From 2000 to 2020, the...
    Biodiversity
    5
    minutes

    Kultarrs are tiny, cryptic creatures that only come out at night....

    In Australia’s arid and semi-arid zones lives a highly elusive predator. It’s small but fierce and feisty, with big...
    Biodiversity
    4
    minutes

    Rain gave Australia’s environment a fourth year of reprieve in 2024...

    For the fourth year running, the condition of Australia’s environment has been relatively good overall. Our national environment scorecard...
    Biodiversity
    4
    minutes

    An ecoacoustic dataset collected on the island of Cyprus in the...

    Human activities are accelerating biodiversity loss1. National and international efforts are being made to address this global challenge. In December 2022, countries worldwide...
    Biodiversity
    3
    minutes
    spot_imgspot_img