Global scale high-resolution habitat suitability modeling of avifauna providing pollination service (sunbirds, Nectariniidae)


  • Hassan, R. M., Scholes, R. J., Ash, N., Ecosystem Assessment, M., Trends Working, G. & C. & Ecosystems and Human well-being: Current State and Trends : Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment. xxi, 917 Pages: Illustrations (some Color), maps (some Color) ; 28 cm. (Island, 2005).

  • Gazzea, E., Batáry, P. & Marini, L. Global meta-analysis shows reduced quality of food crops under inadequate animal pollination. Nat. Commun. 14, 4463. https://doi.org/10.1038/s41467-023-40231-y (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulyshen, M., Urban-Mead, K. R., Dorey, J. B. & Rivers, J. W. Forests are critically important to global pollinator diversity and enhance pollination in adjacent crops. Biol. Rev. 98, 1118–1141. https://doi.org/10.1111/brv.12947 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Aziz, S. A. et al. The critical importance of Old World Fruit bats for healthy ecosystems and economies. Front. Ecol. Evol. 9 (2021).

  • Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front. Ecol. Environ. 16, 82–90. https://doi.org/10.1002/fee.1763 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2006).

  • Newmark, W. D., Mkongewa, V. J., Amundsen, D. L. & Welch, C. African sunbirds predominantly pollinate plants useful to humans. Condor 122, duz070. https://doi.org/10.1093/condor/duz070 (2020).

    Article 

    Google Scholar
     

  • Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kearns, C. A., Inouye, D. W. & Pollinators Flowering Plants, and Conservation Biology. BioScience 47, 297–307. https://doi.org/10.2307/1313191 (1997).

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Global trends in the Status of Bird and Mammal pollinators. Conserv. Lett. 8, 397–403. https://doi.org/10.1111/conl.12162 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5, 1453–1461. https://doi.org/10.1038/s41559-021-01534-9 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Whelan, C. J., Şekercioğlu, Ç. H. & Wenny, D. G. Why birds matter: from economic ornithology to ecosystem services. J. Ornithol. 156, 227–238. https://doi.org/10.1007/s10336-015-1229-y (2015).

    Article 

    Google Scholar
     

  • BirdLife International. (2021).

  • Whitehead, K. J. The Functional role of Birds as Pollinators in Southern Cape Fynbos. (University of KwaZulu-Natal, 2018).

  • Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: with Applications in R. (Cambridge University Press, 2017).

  • Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392. https://doi.org/10.1111/j.1365-2664.2006.01164.x (2006).

    Article 
    MATH 

    Google Scholar
     

  • Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. W. Paleodistribution modeling in archaeology and paleoanthropology. Q. Sci. Rev. 110, 1–14. https://doi.org/10.1016/j.quascirev.2014.12.015 (2015).

    Article 

    Google Scholar
     

  • Di Febbraro, M. et al. Different facets of the same niche: integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. Glob. Change Biol. 29, 5509–5523. https://doi.org/10.1111/gcb.16901 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Rehan, M. et al. Application of species distribution models to estimate and manage the Asiatic black bear (Ursus thibetanus) habitat in the Hindu Kush Mountains, Pakistan. Eur. J. Wildl. Res. 70, 62. https://doi.org/10.1007/s10344-024-01806-2 (2024).

    Article 

    Google Scholar
     

  • Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158. https://doi.org/10.1016/j.tree.2007.11.005 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, T. Y., Walther, B. A., Chen, Y. H., Lin, R. S. & Lee, P. F. Hotspot analysis of Taiwanese breeding birds to determine gaps in the protected area network. Zoological Stud. 52, 29. https://doi.org/10.1186/1810-522X-52-29 (2013).

    Article 

    Google Scholar
     

  • de Carvalho, D. L. et al. Delimiting priority areas for the conservation of endemic and threatened neotropical birds using a niche-based gap analysis. PLOS ONE 12, e0171838. https://doi.org/10.1371/journal.pone.0171838 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, M. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Ind. 97, 159–164. https://doi.org/10.1016/j.ecolind.2018.10.003 (2019).

    Article 

    Google Scholar
     

  • Ramírez-Albores, J. E., Prieto-Torres, D. A., Gordillo-Martínez, A. & Sánchez-Ramos, L. E. Navarro-Sigüenza, A. G. insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. Divers. Distrib. 27, 18–33. https://doi.org/10.1111/ddi.13153 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Campbell, C. E., Jones, D. N., Awasthy, M., Castley, J. G. & Chauvenet, A. L. M. which birds have the most to lose? An analysis of bird species’ feeding habitat in changing Australian landscapes. Biodivers. Conserv. 33, 2867–2883. https://doi.org/10.1007/s10531-024-02890-1 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hotta, M. et al. Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan’s northern Alps. BMC Ecol. 19, 23. https://doi.org/10.1186/s12898-019-0238-8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L., Liao, J., Wu, Y. & Zhang, Y. Breeding range shift of the red-crowned crane (Grus japonensis) under climate change. PLOS ONE 15, e0229984. https://doi.org/10.1371/journal.pone.0229984 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheykhi Ilanloo, S. et al. Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near threatened avian scavenger. Avian Biol. Res. 14, 18–26. https://doi.org/10.1177/1758155920962750 (2020).

    Article 

    Google Scholar
     

  • Lavers, J. L., Miller, M. G. R., Carter, M. J., Swann, G. & Clarke, R. H. Predicting the spatial distribution of a Seabird Community to identify Priority Conservation Areas in the Timor Sea. Conserv. Biol. 28, 1699–1709. https://doi.org/10.1111/cobi.12324 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sala, O. E. et al. Global biodiversity scenarios for the Year 2100. Science 287, 1770–1774. https://doi.org/10.1126/science.287.5459.1770 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092. https://doi.org/10.1038/nplants.2016.92 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gérard, M., Vanderplanck, M., Wood, T. & Michez, D. Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci. 4, 77–86. https://doi.org/10.1042/ETLS20190139 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788. https://doi.org/10.1016/j.scitotenv.2021.145788 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Remolina-Figueroa, D. et al. Together forever? Hummingbird-plant relationships in the face of climate warming. Clim. Change 175, 2. https://doi.org/10.1007/s10584-022-03447-3 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying Priority areas for Conservation: A Global Assessment for Forest-Dependent Birds. PLOS ONE 6, e29080. https://doi.org/10.1371/journal.pone.0029080 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • T Brum, F. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. 114, 7641–7646. https://doi.org/10.1073/pnas.1706461114 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nori, J., Loyola, R. & Villalobos, F. Priority areas for conservation of and research focused on terrestrial vertebrates. Conserv. Biol. 34, 1281–1291. https://doi.org/10.1111/cobi.13476 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461. https://doi.org/10.1038/s41467-020-18230-0 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231. https://doi.org/10.1111/geb.13297 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Li, G. et al. Identifying conservation priority areas for gymnosperm species under climate changes in China. Biol. Conserv. 253, 108914. https://doi.org/10.1016/j.biocon.2020.108914 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Bosso, L. et al. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Ecol. Inf. 79, 102402. https://doi.org/10.1016/j.ecoinf.2023.102402 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Visser, M. E. & Sanz, J. J. Solar activity affects avian timing of reproduction. Biol. Lett. 5, 739–742. https://doi.org/10.1098/rsbl.2009.0429 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gonçalves, G. S. R., Cerqueira, P. V., Brasil, L. S. & Santos, M. P. D. The role of climate and environmental variables in structuring bird assemblages in the seasonally dry Tropical forests (SDTFs). PLOS ONE 12, e0176066. https://doi.org/10.1371/journal.pone.0176066 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, B., Mackowski, C., Schoer, L. & Tweedie, T. Flowering phenology of myrtaceous trees and their relation to climatic, environmental and disturbance variables in northern New South Wales. Austral Ecol. 25, 160–178. https://doi.org/10.1046/j.1442-9993.2000.01009.x (2000).

    Article 
    MATH 

    Google Scholar
     

  • Allan, J. R. et al. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 17, e3000158. https://doi.org/10.1371/journal.pbio.3000158 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Buonincontri, M. P. et al. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses. Sci. Total Environ. 877, 162893. https://doi.org/10.1016/j.scitotenv.2023.162893 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan, S. N. et al. Human-induced disturbances Influence on Bird communities of Coastal forests in Eastern Tanzania. Curr. J. Appl. Sci. Technol. 3, 48–64. https://doi.org/10.9734/BJAST/2014/2200 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Fraissinet, M. et al. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landscape Ecol. 38, 293–305. https://doi.org/10.1007/s10980-022-01550-5 (2023).

    Article 

    Google Scholar
     

  • Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences 110, E2602-E2610. https://doi.org/10.1073/pnas.1302251110 (2013).

  • Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071. https://doi.org/10.1038/s41467-020-18779-w (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kafash, A., Ashrafi, S. & Yousefi, M. Biogeography of bats in Iran: Mapping and disentangling environmental and historical drivers of bat richness. J. Zoological Syst. Evolutionary Res. 59, 1546–1556. https://doi.org/10.1111/jzs.12520 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Yousefi, M., Jouladeh-Roudbar, A. & Kafash, A. Mapping endemic freshwater fish richness to identify high-priority areas for conservation: an ecoregion approach. Ecol. Evol. 14, e10970. https://doi.org/10.1002/ece3.10970 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler, D. W. & Billerman, S. M. and I. J. Lovette (ed Cornell Lab of Ornithology)Ithaca, NY, USA. (2020).

  • Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L. & Jetz, W. Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography 44, 640–652. https://doi.org/10.1111/ecog.05119 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in Evolutionary Time. Science 285, 1265–1267. https://doi.org/10.1126/science.285.5431.1265 (1999).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Porto, R. G. et al. Pollination ecosystem services: a comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442. https://doi.org/10.1007/s12571-020-01043-w (2020).

    Article 
    MATH 

    Google Scholar
     

  • GBIF. (2021).

  • Chamberlain, S., Ram, K. & Hart, T. (2019).

  • DIVAGIS: versión 7.5. Lizard Tech, Inc. and the University of California, (2012).

  • Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Seavy, N. E. Physiological correlates of habitat association in East African sunbirds (Nectariniidae). J. Zool. 270, 290–297. https://doi.org/10.1111/j.1469-7998.2006.00138.x (2006).

    Article 

    Google Scholar
     

  • Nicolaï, M. P. J. et al. Ecological, genetic and geographical divergence explain differences in colouration among sunbird species (Nectariniidae). Ecol. Evol. 14, e11427. https://doi.org/10.1002/ece3.11427 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar
     

  • Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. (2008).

  • Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067. https://doi.org/10.1038/sdata.2016.67 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558. https://doi.org/10.1038/ncomms12558 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists. (Cambridge University Press, 2002).

  • Package. ‘usdm’. Uncertainty analysis for species distribution models Wien. (2017).

  • R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Elith*, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhao, G. et al. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Ind. 132, 108256. https://doi.org/10.1016/j.ecolind.2021.108256 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Cobos, M. E., Peterson, A. T. & Barve, N. Osorio-Olvera, L. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Swets, J. A. Measuring the Accuracy of Diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615 (1988).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Olson, D. M. et al. Terrestrial ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[ (2001). 0933:TEOTWA]2.0.CO;2.

    Article 
    MATH 

    Google Scholar
     

  • Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. 4, 1–9 (2001).



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img