Hassan, R. M., Scholes, R. J., Ash, N., Ecosystem Assessment, M., Trends Working, G. & C. & Ecosystems and Human well-being: Current State and Trends : Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment. xxi, 917 Pages: Illustrations (some Color), maps (some Color) ; 28 cm. (Island, 2005).
Gazzea, E., Batáry, P. & Marini, L. Global meta-analysis shows reduced quality of food crops under inadequate animal pollination. Nat. Commun. 14, 4463. https://doi.org/10.1038/s41467-023-40231-y (2023).
Ulyshen, M., Urban-Mead, K. R., Dorey, J. B. & Rivers, J. W. Forests are critically important to global pollinator diversity and enhance pollination in adjacent crops. Biol. Rev. 98, 1118–1141. https://doi.org/10.1111/brv.12947 (2023).
Aziz, S. A. et al. The critical importance of Old World Fruit bats for healthy ecosystems and economies. Front. Ecol. Evol. 9 (2021).
Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front. Ecol. Environ. 16, 82–90. https://doi.org/10.1002/fee.1763 (2018).
Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2006).
Newmark, W. D., Mkongewa, V. J., Amundsen, D. L. & Welch, C. African sunbirds predominantly pollinate plants useful to humans. Condor 122, duz070. https://doi.org/10.1093/condor/duz070 (2020).
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).
Kearns, C. A., Inouye, D. W. & Pollinators Flowering Plants, and Conservation Biology. BioScience 47, 297–307. https://doi.org/10.2307/1313191 (1997).
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).
Regan, E. C. et al. Global trends in the Status of Bird and Mammal pollinators. Conserv. Lett. 8, 397–403. https://doi.org/10.1111/conl.12162 (2015).
Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018. https://doi.org/10.1038/s41467-019-08974-9 (2019).
Dicks, L. V. et al. A global-scale expert assessment of drivers and risks associated with pollinator decline. Nat. Ecol. Evol. 5, 1453–1461. https://doi.org/10.1038/s41559-021-01534-9 (2021).
Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).
Whelan, C. J., Şekercioğlu, Ç. H. & Wenny, D. G. Why birds matter: from economic ornithology to ecosystem services. J. Ornithol. 156, 227–238. https://doi.org/10.1007/s10336-015-1229-y (2015).
BirdLife International. (2021).
Whitehead, K. J. The Functional role of Birds as Pollinators in Southern Cape Fynbos. (University of KwaZulu-Natal, 2018).
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: with Applications in R. (Cambridge University Press, 2017).
Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392. https://doi.org/10.1111/j.1365-2664.2006.01164.x (2006).
Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R. M. & Marean, C. W. Paleodistribution modeling in archaeology and paleoanthropology. Q. Sci. Rev. 110, 1–14. https://doi.org/10.1016/j.quascirev.2014.12.015 (2015).
Di Febbraro, M. et al. Different facets of the same niche: integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. Glob. Change Biol. 29, 5509–5523. https://doi.org/10.1111/gcb.16901 (2023).
Rehan, M. et al. Application of species distribution models to estimate and manage the Asiatic black bear (Ursus thibetanus) habitat in the Hindu Kush Mountains, Pakistan. Eur. J. Wildl. Res. 70, 62. https://doi.org/10.1007/s10344-024-01806-2 (2024).
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158. https://doi.org/10.1016/j.tree.2007.11.005 (2008).
Wu, T. Y., Walther, B. A., Chen, Y. H., Lin, R. S. & Lee, P. F. Hotspot analysis of Taiwanese breeding birds to determine gaps in the protected area network. Zoological Stud. 52, 29. https://doi.org/10.1186/1810-522X-52-29 (2013).
de Carvalho, D. L. et al. Delimiting priority areas for the conservation of endemic and threatened neotropical birds using a niche-based gap analysis. PLOS ONE 12, e0171838. https://doi.org/10.1371/journal.pone.0171838 (2017).
Moradi, S., Sheykhi Ilanloo, S., Kafash, A. & Yousefi, M. Identifying high-priority conservation areas for avian biodiversity using species distribution modeling. Ecol. Ind. 97, 159–164. https://doi.org/10.1016/j.ecolind.2018.10.003 (2019).
Ramírez-Albores, J. E., Prieto-Torres, D. A., Gordillo-Martínez, A. & Sánchez-Ramos, L. E. Navarro-Sigüenza, A. G. insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. Divers. Distrib. 27, 18–33. https://doi.org/10.1111/ddi.13153 (2021).
Campbell, C. E., Jones, D. N., Awasthy, M., Castley, J. G. & Chauvenet, A. L. M. which birds have the most to lose? An analysis of bird species’ feeding habitat in changing Australian landscapes. Biodivers. Conserv. 33, 2867–2883. https://doi.org/10.1007/s10531-024-02890-1 (2024).
Hotta, M. et al. Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan’s northern Alps. BMC Ecol. 19, 23. https://doi.org/10.1186/s12898-019-0238-8 (2019).
Liu, L., Liao, J., Wu, Y. & Zhang, Y. Breeding range shift of the red-crowned crane (Grus japonensis) under climate change. PLOS ONE 15, e0229984. https://doi.org/10.1371/journal.pone.0229984 (2020).
Sheykhi Ilanloo, S. et al. Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a Near threatened avian scavenger. Avian Biol. Res. 14, 18–26. https://doi.org/10.1177/1758155920962750 (2020).
Lavers, J. L., Miller, M. G. R., Carter, M. J., Swann, G. & Clarke, R. H. Predicting the spatial distribution of a Seabird Community to identify Priority Conservation Areas in the Timor Sea. Conserv. Biol. 28, 1699–1709. https://doi.org/10.1111/cobi.12324 (2014).
Sala, O. E. et al. Global biodiversity scenarios for the Year 2100. Science 287, 1770–1774. https://doi.org/10.1126/science.287.5459.1770 (2000).
Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x (2007).
Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092. https://doi.org/10.1038/nplants.2016.92 (2016).
Gérard, M., Vanderplanck, M., Wood, T. & Michez, D. Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci. 4, 77–86. https://doi.org/10.1042/ETLS20190139 (2020).
Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788. https://doi.org/10.1016/j.scitotenv.2021.145788 (2021).
Remolina-Figueroa, D. et al. Together forever? Hummingbird-plant relationships in the face of climate warming. Clim. Change 175, 2. https://doi.org/10.1007/s10584-022-03447-3 (2022).
Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying Priority areas for Conservation: A Global Assessment for Forest-Dependent Birds. PLOS ONE 6, e29080. https://doi.org/10.1371/journal.pone.0029080 (2011).
T Brum, F. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. 114, 7641–7646. https://doi.org/10.1073/pnas.1706461114 (2017).
Nori, J., Loyola, R. & Villalobos, F. Priority areas for conservation of and research focused on terrestrial vertebrates. Conserv. Biol. 34, 1281–1291. https://doi.org/10.1111/cobi.13476 (2020).
Cazalis, V. et al. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun. 11, 4461. https://doi.org/10.1038/s41467-020-18230-0 (2020).
Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231. https://doi.org/10.1111/geb.13297 (2021).
Li, G. et al. Identifying conservation priority areas for gymnosperm species under climate changes in China. Biol. Conserv. 253, 108914. https://doi.org/10.1016/j.biocon.2020.108914 (2021).
Bosso, L. et al. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Ecol. Inf. 79, 102402. https://doi.org/10.1016/j.ecoinf.2023.102402 (2024).
Visser, M. E. & Sanz, J. J. Solar activity affects avian timing of reproduction. Biol. Lett. 5, 739–742. https://doi.org/10.1098/rsbl.2009.0429 (2009).
Gonçalves, G. S. R., Cerqueira, P. V., Brasil, L. S. & Santos, M. P. D. The role of climate and environmental variables in structuring bird assemblages in the seasonally dry Tropical forests (SDTFs). PLOS ONE 12, e0176066. https://doi.org/10.1371/journal.pone.0176066 (2017).
Law, B., Mackowski, C., Schoer, L. & Tweedie, T. Flowering phenology of myrtaceous trees and their relation to climatic, environmental and disturbance variables in northern New South Wales. Austral Ecol. 25, 160–178. https://doi.org/10.1046/j.1442-9993.2000.01009.x (2000).
Allan, J. R. et al. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biol. 17, e3000158. https://doi.org/10.1371/journal.pbio.3000158 (2019).
Buonincontri, M. P. et al. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses. Sci. Total Environ. 877, 162893. https://doi.org/10.1016/j.scitotenv.2023.162893 (2023).
Hassan, S. N. et al. Human-induced disturbances Influence on Bird communities of Coastal forests in Eastern Tanzania. Curr. J. Appl. Sci. Technol. 3, 48–64. https://doi.org/10.9734/BJAST/2014/2200 (2012).
Fraissinet, M. et al. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landscape Ecol. 38, 293–305. https://doi.org/10.1007/s10980-022-01550-5 (2023).
Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103, 19374–19379. https://doi.org/10.1073/pnas.0609334103 (2006).
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences 110, E2602-E2610. https://doi.org/10.1073/pnas.1302251110 (2013).
Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071. https://doi.org/10.1038/s41467-020-18779-w (2020).
Kafash, A., Ashrafi, S. & Yousefi, M. Biogeography of bats in Iran: Mapping and disentangling environmental and historical drivers of bat richness. J. Zoological Syst. Evolutionary Res. 59, 1546–1556. https://doi.org/10.1111/jzs.12520 (2021).
Yousefi, M., Jouladeh-Roudbar, A. & Kafash, A. Mapping endemic freshwater fish richness to identify high-priority areas for conservation: an ecoregion approach. Ecol. Evol. 14, e10970. https://doi.org/10.1002/ece3.10970 (2024).
Winkler, D. W. & Billerman, S. M. and I. J. Lovette (ed Cornell Lab of Ornithology)Ithaca, NY, USA. (2020).
Ellis-Soto, D., Merow, C., Amatulli, G., Parra, J. L. & Jetz, W. Continental-scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography 44, 640–652. https://doi.org/10.1111/ecog.05119 (2021).
Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in Evolutionary Time. Science 285, 1265–1267. https://doi.org/10.1126/science.285.5431.1265 (1999).
Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 (2005).
Porto, R. G. et al. Pollination ecosystem services: a comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442. https://doi.org/10.1007/s12571-020-01043-w (2020).
GBIF. (2021).
Chamberlain, S., Ram, K. & Hart, T. (2019).
DIVAGIS: versión 7.5. Lizard Tech, Inc. and the University of California, (2012).
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).
Seavy, N. E. Physiological correlates of habitat association in East African sunbirds (Nectariniidae). J. Zool. 270, 290–297. https://doi.org/10.1111/j.1469-7998.2006.00138.x (2006).
Nicolaï, M. P. J. et al. Ecological, genetic and geographical divergence explain differences in colouration among sunbird species (Nectariniidae). Ecol. Evol. 14, e11427. https://doi.org/10.1002/ece3.11427 (2024).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. (2008).
Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067. https://doi.org/10.1038/sdata.2016.67 (2016).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558. https://doi.org/10.1038/ncomms12558 (2016).
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists. (Cambridge University Press, 2002).
Package. ‘usdm’. Uncertainty analysis for species distribution models Wien. (2017).
R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).
Elith*, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).
Zhao, G. et al. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Ind. 132, 108256. https://doi.org/10.1016/j.ecolind.2021.108256 (2021).
Cobos, M. E., Peterson, A. T. & Barve, N. Osorio-Olvera, L. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).
Swets, J. A. Measuring the Accuracy of Diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615 (1988).
Olson, D. M. et al. Terrestrial ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[ (2001). 0933:TEOTWA]2.0.CO;2.
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. 4, 1–9 (2001).