Harnessing artificial intelligence to fill global shortfalls in biodiversity knowledge


  • COP15: final text of Kunming–Montréal Global Biodiversity Framework. Convention on Biological Diversity https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (2022).

  • Caldwell, I. R. et al. Global trends and biases in biodiversity conservation research. Cell Rep. Sustain. 1, 100082 (2024).


    Google Scholar
     

  • García-Roselló, E., González-Dacosta, J. & Lobo, J. M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 283, 110118 (2023).


    Google Scholar
     

  • Daru, B. H. & Rodriguez, J. Mass production of unvouchered records fails to represent global biodiversity patterns. Nat. Ecol. Evol. 7, 816–831 (2023).


    Google Scholar
     

  • Daru, B. H. et al. Widespread sampling biases in herbaria revealed from large-scale digitization. N. Phytol. 217, 939–955 (2018).


    Google Scholar
     

  • Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).

    CAS 

    Google Scholar
     

  • Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).


    Google Scholar
     

  • Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS 

    Google Scholar
     

  • Berger-Tal, O. & Lahoz-Monfort, J. J. Conservation technology: the next generation. Conserv. Lett. 11, e12458 (2018).


    Google Scholar
     

  • Tuia, D. et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 13, 792 (2022).

    CAS 

    Google Scholar
     

  • Barta, Z. Deep learning in terrestrial conservation biology. Biol. Futura 74, 359–367 (2023).


    Google Scholar
     

  • Stowell, D. Computational bioacoustics with deep learning: a review and roadmap. PeerJ 10, e13152 (2022).


    Google Scholar
     

  • Weinstein, B. G. A computer vision for animal ecology. J. Anim. Ecol. 87, 533–545 (2018).


    Google Scholar
     

  • Schneider, S., Taylor, G. W., Linquist, S. & Kremer, S. C. Past, present and future approaches using computer vision for animal re-identification from camera trap data. Meth. Ecol. Evol. 10, 461–470 (2019).


    Google Scholar
     

  • Tuia, D. et al. Toward a collective agenda on AI for Earth science data analysis. IEEE Geosci. Remote. Sens. Mag. 9, 88–104 (2021).


    Google Scholar
     

  • Biodiversity and Artificial Intelligence: Opportunities & Recommendations for Action. The Global Partnership on AI https://gpai.ai/projects/responsible-ai/environment/biodiversity-and-AI-opportunities-recommendations-for-action.pdf (2022).

  • Pichler, M. & Hartig, F. Machine learning and deep learning—a review for ecologists. Meth. Ecol. Evol. 14, 994–1016 (2023).


    Google Scholar
     

  • Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).


    Google Scholar
     

  • Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, 6723 (2024).


    Google Scholar
     

  • Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Meth. 21, 1481–1491 (2024).

    CAS 

    Google Scholar
     

  • Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).

  • Stevens, S. et al. BioCLIP: a vision foundation model for the tree of life. In 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 19412–19424 (IEEE, 2024).

  • Bánki, O. Catalogue of Life Annual Release 2024. Catalogue of Life https://www.catalogueoflife.org/2024/06/27/release (2024).

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

    CAS 

    Google Scholar
     

  • Caley, M. J., Fisher, R. & Mengersen, K. Global species richness estimates have not converged. Trends Ecol. Evol. 29, 187–188 (2014).


    Google Scholar
     

  • Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).


    Google Scholar
     

  • Winter, M. et al. Patterns and biases in climate change research on amphibians and reptiles: a systematic review. R. Soc. Open Sci. 3, 160158 (2016).


    Google Scholar
     

  • Diniz-Filho, J. A. F., De Marco, P. Jr & Hawkins, B. A. Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv. Divers. 3, 172–179 (2010).


    Google Scholar
     

  • Löbl, I., Klausnitzer, B., Hartmann, M. & Krell, F.-T. The silent extinction of species and taxonomists—an appeal to science policymakers and legislators. Diversity 15, 1053 (2023).


    Google Scholar
     

  • Parsons, D. J., Pelletier, T. A., Wieringa, J. G., Duckett, D. J. & Carstens, B. C. Analysis of biodiversity data suggests that mammal species are hidden in predictable places. Proc. Natl Acad. Sci. USA 119, e2103400119 (2022).

    CAS 

    Google Scholar
     

  • Gong, Z. et al. BIOSCAN-CLIP: bridging vision and genomics for biodiversity monitoring at scale. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.17537 (2024).

  • Zhao, B. & Mac Aodha, O. Incremental generalized category discovery. In 2023 Proc. IEEE/CVF Int. Conf. Comput. Vis. 19080–19090 (IEEE, 2023).

  • Li, R., Ratnasingham, S., Zarubiieva, I., Somervuo, P. & Taylor, G. W. PROTAX-GPU: a scalable probabilistic taxonomic classification system for DNA barcodes. Phil. Trans. R. Soc. B 379, 20230124 (2024).

    CAS 

    Google Scholar
     

  • Chen, Y. & Rolnick, D. Understanding insect range shifts with out-of-distribution detection. climatechange.ai https://www.climatechange.ai/papers/neurips2023/130/paper.pdf (Climate Change AI, 2023).

  • Gabeff, V., Rußwurm, M., Tuia, D. & Mathis, A. WildCLIP: scene and animal attribute retrieval from camera trap data with domain-adapted vision-language models. Int. J. Comput. Vis. 132, 3770–3786 (2024).


    Google Scholar
     

  • Paul, D. et al. A simple interpretable transformer for fine-grained image classification and analysis. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.04157 (2024).

  • Chiquier, M., Mall, U. & Vondrick, C. Evolving interpretable visual classifiers with large language models. In Computer Vision—ECCV 2024: Lecture Notes in Computer Science (eds Leonardis, A. et al.) 15122 (Springer, 2024).

  • Gonzalez, A. et al. A global biodiversity observing system to unite monitoring and guide action. Nat. Ecol. Evol. 7, 1947–1952 (2023).


    Google Scholar
     

  • Lees, A. C. et al. A roadmap to identifying and filling shortfalls in Neotropical ornithology. Auk 137, ukaa048 (2020).


    Google Scholar
     

  • Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).


    Google Scholar
     

  • Moeller, A. K., Lukacs, P. M. & Horne, J. S. Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere 9, e02331 (2018).


    Google Scholar
     

  • Gilbert, N. A., Clare, J. D. J., Stenglein, J. L. & Zuckerberg, B. Abundance estimation of unmarked animals based on camera-trap data. Conserv. Biol. 35, 88–100 (2021).


    Google Scholar
     

  • Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).


    Google Scholar
     

  • Strebel, N. et al. Estimating abundance based on time-to-detection data. Meth. Ecol. Evol. 12, 909–920 (2021).


    Google Scholar
     

  • Fiss, C. J. et al. Performance of unmarked abundance models with data from machine-learning classification of passive acoustic recordings. Ecosphere 15, e4954 (2024).


    Google Scholar
     

  • Frommolt, K.-H. & Tauchert, K.-H. Applying bioacoustic methods for long-term monitoring of a nocturnal wetland bird. Ecol. Inform. 21, 4–12 (2014).


    Google Scholar
     

  • Rhinehart, T. A., Chronister, L. M., Devlin, T. & Kitzes, J. Acoustic localization of terrestrial wildlife: current practices and future opportunities. Ecol. Evol. 10, 6794–6818 (2020).


    Google Scholar
     

  • Parham, J., Stewart, C., Berger-Wolf, T., Rubenstein, D. & Holmberg, J. The great Grevy’s rally: a review on procedure. cthulhu.dyn.wildme.io https://cthulhu.dyn.wildme.io/public/papers/parham_ijcai_aiwc_2018.pdf (2018).

  • Whitehead, H. Computer assisted individual identification of sperm whale flukes. Rep. Int. Whal. Comm. 12, 71–77 (1990).


    Google Scholar
     

  • Crall, J. P., Stewart, C. V., Berger-Wolf, T. Y., Rubenstein, D. I. & Sundaresan, S. R. HotSpotter; patterned species instance recognition. In 2013 IEEE Workshop on Applications of Computer Vision (WACV) 230–237 (IEEE, 2013).

  • Arzoumanian, Z., Holmberg, J. & Norman, B. An astronomical pattern-matching algorithm for computer-aided identification of whale sharks, Rhincodon typus. J. Appl. Ecol. 42, 999–1011 (2005).


    Google Scholar
     

  • Ye, M. et al. Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44, 2872–2893 (2021).


    Google Scholar
     

  • Nepovinnykh, E. et al. Species-agnostic patterned animal re-identification by aggregating deep local features. Int. J. Comput. Vis. 132, 4003–4018 (2024).


    Google Scholar
     

  • Čermák, V., Picek, L., Adam, L. & Papafitsoros, K. WildlifeDatasets: an open-source toolkit for animal re-identification. In 2024 IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV) 5941–5951 (IEEE, 2024).

  • Moskvyak, O., Maire, F., Armstrong, A. O., Dayoub, F. & Baktashmotlagh, M. Robust re-identification of manta rays from natural markings by learning pose invariant embeddings. In 2021 Digital Image Computing: Techniques and Applications (DICTA) https://doi.org/10.1109/DICTA52665.2021.9647359 (IEEE, 2021).

  • Sundaresan, A. et al. Adapting the re-ID challenge for static sensors. Preprint at arXiv https://doi.org/10.48550/arXiv.2412.00290 (2024).

  • Ravoor, P. C. & Sudarshan, T. S. B. Deep learning methods for multi-species animal re-identification and tracking—a survey. Comput. Sci. Rev. 38, 100289 (2020).


    Google Scholar
     

  • Zuerl, M. et al. PolarBearVidID: a video-based re-identification benchmark dataset for polar bears. Animals 13, 801 (2023).


    Google Scholar
     

  • Kuncheva, L. I., Garrido-Labrador, J. L., Ramos-Pérez, I., Hennessey, S. L. & Rodríguez, J. J. An experiment on animal re-identification from video. Ecol. Inform. 74, 101994 (2023).


    Google Scholar
     

  • Koski, W. R. et al. Evaluation of UAS for photographic re-identification of bowhead whales, Balaena mysticetus. J. Unman. Veh. Syst. 3, 22–29 (2015).


    Google Scholar
     

  • Knight, E. et al. Individual identification in acoustic recordings. Trends Ecol. Evol. 39, 947–960 (2024).


    Google Scholar
     

  • Linhart, P., Mahamoud-Issa, M., Stowell, D. & Blumstein, D. T. The potential for acoustic individual identification in mammals. Mamm. Biol. 102, 667–683 (2022).


    Google Scholar
     

  • Yang, J., Zhou, K., Li, Y. & Liu, Z. Generalized out-of-distribution detection: a survey. Int. J. Comput. Vis. 132, 5635–5662 (2024).


    Google Scholar
     

  • Vaze, S., Han, K., Vedaldi, A. & Zisserman, A. Generalized category discovery. In 2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 7482–7491 (IEEE, 2022).

  • Kulits, P., Wall, J., Bedetti, A., Henley, M. & Beery, S. ElephantBook: a semi-automated human-in-the-loop system for elephant re-identification. In ACM SIGCAS Conf. on Computing and Sustainable Societies (COMPASS) 88–98 (Association for Computing Machinery, 2021).

  • Delplanque, A. et al. From crowd to herd counting: how to precisely detect and count African mammals using aerial imagery and deep learning? ISPRS J. Photogramm. Remote. Sens. 197, 167–180 (2023).


    Google Scholar
     

  • Perez, G., Maji, S. & Sheldon, D. DISCount: counting in large image collections with detector-based importance sampling. Proc. AAAI Conf. Artif. Intell. 38, 22294–22302 (2024).


    Google Scholar
     

  • Hebert, P. D. N., Floyd, R., Jafarpour, S. & Prosser, S. W. J. Barcode 100K specimens: in a single nanopore run. Mol. Ecol. Resour. 25, e14028 (2025).


    Google Scholar
     

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    CAS 

    Google Scholar
     

  • Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).


    Google Scholar
     

  • Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B 267, 1947–1952 (2000).

    CAS 

    Google Scholar
     

  • Newsome, T. M. et al. Constraints on vertebrate range size predict extinction risk. Glob. Ecol. Biogeogr. 29, 76–86 (2020).


    Google Scholar
     

  • Staude, I. R., Navarro, L. M. & Pereira, H. M. Range size predicts the risk of local extinction from habitat loss. Glob. Ecol. Biogeogr. 29, 16–25 (2020).


    Google Scholar
     

  • Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).


    Google Scholar
     

  • Jetz, W. et al. Include biodiversity representation indicators in area-based conservation targets. Nat. Ecol. Evol. 6, 123–126 (2022).


    Google Scholar
     

  • Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).


    Google Scholar
     

  • Geurts, E. M., Reynolds, J. D. & Starzomski, B. M. Turning observations into biodiversity data: broadscale spatial biases in community science. Ecosphere 14, e4582 (2023).


    Google Scholar
     

  • Fretwell, P. T. & Trathan, P. N. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sens. Ecol. Conserv. 7, 139–153 (2021).


    Google Scholar
     

  • Cubaynes, H. C. & Fretwell, P. T. Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models. Sci. Data 9, 245 (2022).


    Google Scholar
     

  • Mannocci, L. et al. Leveraging social media and deep learning to detect rare megafauna in video surveys. Conserv. Biol. 36, e13798 (2022).


    Google Scholar
     

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 

    Google Scholar
     

  • Beery, S., Cole, E., Parker, J., Perona, P. & Winner, K. Species distribution modeling for machine learning practitioners: a review. In Proc. 4th ACM SIGCAS Conf. on Computing and Sustainable Societies 329–348 (Association for Computing Machinery, 2021).

  • Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).


    Google Scholar
     

  • Botella, C. et al. Overview of GeoLifeCLEF 2023: species composition prediction with high spatial resolution at continental scale using remote sensing. In CLEF 2023—Working Notes of the Conference and Labs of the Evaluation Forum article 3497, 1954–1971 (2023).

  • Mashiane, K., Ramoelo, A. & Adelabu, S. Prediction of species richness and diversity in sub-alpine grasslands using satellite remote sensing and random forest machine-learning algorithm. Appl. Veg. Sci. 27, e12778 (2024).


    Google Scholar
     

  • Lange, C., Cole, E., Van Horn, G. & Mac Aodha, O. Active learning-based species range estimation. In NIPS 2023: Proc. 37th Int. Conf. on Neural Information Processing Systems article 1815, 41892–41913 (NeurIPS, 2024).

  • Mondain-Monval, T. et al. Adaptive sampling by citizen scientists improves species distribution model performance: a simulation study. Meth. Ecol. Evol. 15, 1206–1220 (2024).


    Google Scholar
     

  • Seaton, F. M., Jarvis, S. G. & Henrys, P. A. Spatio-temporal data integration for species distribution modelling in R-INLA. Meth. Ecol. Evol. 15, 1221–1232 (2024).


    Google Scholar
     

  • Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Meth. Ecol. Evol. 5, 397–406 (2014).


    Google Scholar
     

  • Caradima, B., Schuwirth, N. & Reichert, P. From individual to joint species distribution models: a comparison of model complexity and predictive performance. J. Biogeogr. 46, 2260–2274 (2019).


    Google Scholar
     

  • Talluto, M. V., Mokany, K., Pollock, L. J. & Thuiller, W. Multifaceted biodiversity modelling at macroecological scales using Gaussian processes. Divers. Distrib. 24, 1492–1502 (2018).


    Google Scholar
     

  • Chen, D. & Gomes, C. P. Bias reduction via end-to-end shift learning: application to citizen science. In Proc. Thirty-Third AAAI Conf. on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conf. and Ninth AAAI Symp. on Educational Advances in Artificial Intelligence 493–500 (AAAI Press, 2019).

  • Rolf, E. et al. A generalizable and accessible approach to machine learning with global satellite imagery. Nat. Commun. 12, 4392 (2021).

    CAS 

    Google Scholar
     

  • Klemmer, K., Rolf, E., Robinson, C., Mackey, L. & Rußwurm, M. SatCLIP: global, general-purpose location embeddings with satellite imagery. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.17179 (2024).

  • Cole, E. et al. Spatial implicit neural representations for global-scale species mapping. In Proc. 40th Int. Conf. on Machine Learning article 202, 6320–6342 (PMLR, 2023).

  • Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J. & Elith, J. Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol. Monogr. 92, e01486 (2022).


    Google Scholar
     

  • Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

    CAS 

    Google Scholar
     

  • Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).


    Google Scholar
     

  • Anderson, R. P. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. NY Acad. Sci. 1297, 8–28 (2013).


    Google Scholar
     

  • Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).


    Google Scholar
     

  • Childress, E. S. & Letcher, B. H. Estimating thermal performance curves from repeated field observations. Ecology 98, 1377–1387 (2017).


    Google Scholar
     

  • Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).

  • Jetz, W. et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 37, 293–298 (2022).


    Google Scholar
     

  • Deetjen, M. E., Biewener, A. A. & Lentink, D. High-speed surface reconstruction of a flying bird using structured light. J. Exp. Biol. 220, 1956–1961 (2017).


    Google Scholar
     

  • Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    CAS 

    Google Scholar
     

  • Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Meth. 19, 486–495 (2022).

    CAS 

    Google Scholar
     

  • Wei, J. N. et al. A deep learning and digital archaeology approach for mosquito repellent discovery. Preprint at bioRxiv https://doi.org/10.1101/2022.09.01.504601 (2024).

  • Nativi, S., Mazzetti, P. & Craglia, M. Digital ecosystems for developing digital twins of the Earth: the Destination Earth case. Remote. Sens. 13, 2119 (2021).


    Google Scholar
     

  • Koning, Kde et al. Digital twins: dynamic model-data fusion for ecology. Trends Ecol. Evol. 38, 916–926 (2023).


    Google Scholar
     

  • Trantas, A., Plug, R., Pileggi, P. & Lazovik, E. Digital twin challenges in biodiversity modelling. Ecol. Inform. 78, 102357 (2023).


    Google Scholar
     

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).


    Google Scholar
     

  • Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).


    Google Scholar
     

  • Oskyrko, O., Mi, C., Meiri, S. & Du, W. ReptTraits: a comprehensive dataset of ecological traits in reptiles. Sci. Data 11, 243 (2024).


    Google Scholar
     

  • Shirey, V. et al. LepTraits 1.0: a globally comprehensive dataset of butterfly traits. Sci. Data 9, 382 (2022).


    Google Scholar
     

  • Sheard, C. et al. Nest traits for the world’s birds. Glob. Ecol. Biogeogr. 33, 206–214 (2024).


    Google Scholar
     

  • Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).


    Google Scholar
     

  • Murphy, S. J. et al. SAviTraits 1.0: seasonally varying dietary attributes for birds. Glob. Ecol. Biogeogr. 32, 1690–1698 (2023).


    Google Scholar
     

  • Madin, J. S. et al. The coral trait database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).


    Google Scholar
     

  • Cébron, A. et al. BactoTraits—a functional trait database to evaluate how natural and man-induced changes influence the assembly of bacterial communities. Ecol. Indic. 130, 108047 (2021).


    Google Scholar
     

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).


    Google Scholar
     

  • Augusto, L. & Boča, A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nat. Commun. 13, 1097 (2022).

    CAS 

    Google Scholar
     

  • Wilde, B. C., Bragg, J. G. & Cornwell, W. Analyzing trait–climate relationships within and among taxa using machine learning and herbarium specimens. Am. J. Bot. 110, e16167 (2023).

    CAS 

    Google Scholar
     

  • Kline, J. et al. A framework for autonomic computing for in situ imageomics. In 2023 IEEE Int. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS) 11–16 (IEEE, 2023).

  • Hoyal Cuthill, J. F., Guttenberg, N. & Huertas, B. Male and female contributions to diversity among birdwing butterfly images. Commun. Biol. 7, 774 (2024).


    Google Scholar
     

  • Stoddard, M. C., Kilner, R. M. & Town, C. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat. Commun. 5, 4117 (2014).

    CAS 

    Google Scholar
     

  • Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).


    Google Scholar
     

  • Marcos, D., Potze, A., Xu, W., Tuia, D. & Akata, Z. Attribute prediction as multiple instance learning. Trans. Mach. Learn. Res. 8, 253156463 (2022).


    Google Scholar
     

  • Crofts, A. L. et al. Linking aerial hyperspectral data to canopy tree biodiversity: an examination of the spectral variation hypothesis. Ecol. Monogr. 94, e1605 (2024).


    Google Scholar
     

  • Wilson, O. J. The 3D pollen project: an open repository of three-dimensional data for outreach, education and research. Rev. Palaeobot. Palynol. 312, 104860 (2023).


    Google Scholar
     

  • Fabian, S. T., Sondhi, Y., Allen, P. E., Theobald, J. C. & Lin, H.-T. Why flying insects gather at artificial light. Nat. Commun. 15, 689 (2024).

    CAS 

    Google Scholar
     

  • Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).


    Google Scholar
     

  • Diniz Filho, J. A. F. et al. Macroecological links between the Linnean, Wallacean, and Darwinian shortfalls. Front. Biogeogr. 15, e59566 (2023).


    Google Scholar
     

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 

    Google Scholar
     

  • Warnow, T. Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation (Cambridge Univ. Press, 2017).

  • Mo, Y. K., Hahn, M. W. & Smith, M. L. Applications of machine learning in phylogenetics. Mol. Phylogenet. Evol. 196, 108066 (2024).

    CAS 

    Google Scholar
     

  • Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).


    Google Scholar
     

  • Younis, S. et al. Taxon and trait recognition from digitized herbarium specimens using deep convolutional neural networks. Bot. Lett. 165, 377–383 (2018).


    Google Scholar
     

  • Weaver, W. N., Ng, J. & Laport, R. G. LeafMachine: using machine learning to automate leaf trait extraction from digitized herbarium specimens. Appl. Plant. Sci. 8, e11367 (2020).


    Google Scholar
     

  • Stupp, D. et al. Co-evolution based machine-learning for predicting functional interactions between human genes. Nat. Commun. 12, 6454 (2021).

    CAS 

    Google Scholar
     

  • Elhamod, M. et al. Discovering novel biological traits from images using phylogeny-guided neural networks. In Proc. 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD 2023) 3966–3978 (Association for Computing Machinery, 2023).

  • Meagher, J. P., Damoulas, T., Jones, K. E. & Girolami, M. in Statistical Data Science (ed. Adams, N.) Ch. 7, 111–124 (World Scientific, 2018).

  • Nguyen, T. Q., Ebnesajjad, C., Cole, S. R. & Stuart, E. A. Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects. Ann. Appl. Stat. 11, 225–247 (2017).


    Google Scholar
     

  • Blackburn, D. C. et al. Increasing the impact of vertebrate scientific collections through 3D imaging: the openVertebrate (oVert) thematic collections network. BioScience 74, 169–186 (2024).


    Google Scholar
     

  • Yang, C.-H. et al. Arboretum: a large multimodal dataset enabling AI for biodiversity. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.17720 (2024).

  • Gharaee, Z. et al. BIOSCAN-5M: a multimodal dataset for insect biodiversity. Preprint at arXiv https://doi.org/10.48550/arXiv.2406.12723 (2024).

  • Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).


    Google Scholar
     

  • Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. Defining and evaluating predictions of joint species distribution models. Meth. Ecol. Evol. 12, 394–404 (2021).


    Google Scholar
     

  • Schliep, E. M. et al. Joint species distribution modelling for spatio‐temporal occurrence and ordinal abundance data. Glob. Ecol. Biogeogr. 27, 142–155 (2018).


    Google Scholar
     

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).


    Google Scholar
     

  • Ratnayake, M. N., Dyer, A. G. & Dorin, A. Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring. PLoS ONE 16, e0239504 (2021).

    CAS 

    Google Scholar
     

  • Liu, J. & Wang, X. Plant diseases and pests detection based on deep learning: a review. Plant. Meth. 17, 22 (2021).


    Google Scholar
     

  • Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).


    Google Scholar
     

  • Nawoya, S. et al. Computer vision and deep learning in insects for food and feed production: a review. Comput. Electron. Agric. 216, 108503 (2024).


    Google Scholar
     

  • Folliot, A., Haupert, S., Ducrettet, M., Sèbe, F. & Sueur, J. Using acoustics and artificial intelligence to monitor pollination by insects and tree use by woodpeckers. Sci. Total. Environ. 838, 155883 (2022).

    CAS 

    Google Scholar
     

  • Ornai, A. & Keasar, T. Floral complexity traits as predictors of plant-bee interactions in a Mediterranean pollination web. Plants 9, 1432 (2020).


    Google Scholar
     

  • Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Meth. Ecol. Evol. 11, 281–293 (2020).


    Google Scholar
     

  • Sydenham, M. A. K. et al. MetaComNet: a random forest-based framework for making spatial predictions of plant–pollinator interactions. Meth. Ecol. Evol. 13, 500–513 (2022).


    Google Scholar
     

  • Caron, D., Maiorano, L., Thuiller, W. & Pollock, L. J. Addressing the Eltonian shortfall with trait-based interaction models. Ecol. Lett. 25, 889–899 (2022).


    Google Scholar
     

  • Llewelyn, J. et al. Predicting predator–prey interactions in terrestrial endotherms using random forest. Ecography 2023, e06619 (2023).


    Google Scholar
     

  • Kotula, H. J., Peralta, G., Frost, C. M., Todd, J. H. & Tylianakis, J. M. Predicting direct and indirect non-target impacts of biocontrol agents using machine-learning approaches. PLoS ONE 16, e0252448 (2021).

    CAS 

    Google Scholar
     

  • Roslin, T. & Majaneva, S. The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite! Genome 59, 603–628 (2016).

    CAS 

    Google Scholar
     

  • Adhurya, S. & Park, Y.-S. A novel method for predicting ecological interactions with an unsupervised machine learning algorithm. Methods Ecol. Evol. 15, 1247–1260 (2024).


    Google Scholar
     

  • Strydom, T. et al. A roadmap towards predicting species interaction networks (across space and time). Phil. Trans. R. Soc. B 376, 20210063 (2021).


    Google Scholar
     

  • Strydom, T. et al. Food web reconstruction through phylogenetic transfer of low-rank network representation. Meth. Ecol. Evol. 13, 2838–2849 (2022).


    Google Scholar
     

  • Suraci, J. P. et al. Beyond spatial overlap: harnessing new technologies to resolve the complexities of predator–prey interactions. Oikos 2022, e09004 (2022).


    Google Scholar
     

  • Caron, D. et al. Trait-matching models predict pairwise interactions across regions, not food web properties. Glob. Ecol. Biogeogr. 33, e13807 (2024).


    Google Scholar
     

  • Corso, G., Stark, H., Jegelka, S., Jaakkola, T. & Barzilay, R. Graph neural networks. Nat. Rev. Meth. Primer 4, 17 (2024).

    CAS 

    Google Scholar
     

  • Hamilton, W. L. Graph representation learning. In Synthesis Lectures on Artificial Intelligence and Machine Learning (SLAIML) https://doi.org/10.1007/978-3-031-01588-5 (Springer, 2020).

  • Kim, J. et al. Pure transformers are powerful graph learners. In Proc. 36th Int. Conf. on Neural Information Processing Systems (NIPS 2022) article 1060, 14582–14595 (NeurIPS, 2022).

  • Strydom, T. et al. Graph embedding and transfer learning can help predict potential species interaction networks despite data limitations. Meth. Ecol. Evol. 14, 2917–2930 (2023).


    Google Scholar
     

  • Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).


    Google Scholar
     

  • McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).

    CAS 

    Google Scholar
     

  • O’Connor, L. M. J. et al. Vulnerability of terrestrial vertebrate food webs to anthropogenic threats in Europe. Glob. Change Biol. 30, e17253 (2024).


    Google Scholar
     

  • Fricke, E. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).

    CAS 

    Google Scholar
     

  • Elliott, M. J. & Fortes, J. A. B. Toward reliable biodiversity information extraction from large language models. In 2024 IEEE 20th Int. Conf. on e-Science (IEEE, 2024).

  • Bledsoe, E. K. et al. Data rescue: saving environmental data from extinction. Proc. R. Soc. B 289, 20220938 (2022).


    Google Scholar
     

  • Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proc. 34th Int. Conf. on Neural Information Processing Systems (NIPS 2020) article 793, 9459–9474 (NeurIPS, 2020).

  • Berger-Tal, O. et al. Leveraging AI to improve evidence synthesis in conservation. Trends Ecol. Evol. 39, 548–557 (2024).


    Google Scholar
     

  • Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography 44, 199–205 (2021).


    Google Scholar
     

  • Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).


    Google Scholar
     

  • Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023).


    Google Scholar
     

  • Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv. 55, 66 (2022).


    Google Scholar
     

  • Liu, L. et al. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat. Commun. 15, 357 (2024).


    Google Scholar
     

  • Hartig, F. et al. Novel community data in ecology-properties and prospects. Trends Ecol. Evol. 39, 280–293 (2024).

    CAS 

    Google Scholar
     

  • Niazi, S. K. & Mariam, Z. Computer-aided drug design and drug discovery: a prospective analysis. Pharmaceuticals 17, 22 (2024).

    CAS 

    Google Scholar
     

  • Guo, K., Yang, Z., Yu, C.-H. & Buehler, M. J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 8, 1153–1172 (2021).

    CAS 

    Google Scholar
     

  • Han, Z., Zhang, L., Jiang, Y., Wang, H. & Jiguet, F. Unravelling species co-occurrence in a steppe bird community of Inner Mongolia: insights for the conservation of the endangered Jankowski’s bunting. Divers. Distrib. 26, 843–852 (2020).


    Google Scholar
     

  • Zérah, Y., Valero, S. & Inglada, J. Physics-driven probabilistic deep learning for the inversion of physical models with application to phenological parameter retrieval from satellite times series. IEEE Trans. Geosci. Remote. Sens. 61, 4404723 (2023).


    Google Scholar
     

  • Karpatne, A., Kannan, R. & Kumar, V. (eds) Knowledge Guided Machine Learning: Accelerating Discovery Using Scientific Knowledge and Data: Data Mining and Knowledge Discovery Series (CRC Press, 2023).

  • Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: a foundation model for weather and climate. In Proc. 40th Int. Conf. on Machine Learning (ICML 2023) 25904–25938 (PMLR, 2023).

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1412 (2023).

    CAS 

    Google Scholar
     

  • de Bézenac, E., Pajot, A. & Gallinari, P. Deep learning for physical processes: incorporating prior scientific knowledge. J. Stat. Mech. 2019, 124009 (2019).


    Google Scholar
     

  • Rolnick, D. et al. Position: application-driven innovation in machine learning. In Proc. 41st Int. Conf. on Machine Learning article 235, 42707–42718 (PMLR, 2024).

  • Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).


    Google Scholar
     

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).


    Google Scholar
     

  • Mahecha, M. D. et al. Earth system data cubes unravel global multivariate dynamics. Earth Syst. Dyn. 11, 201–234 (2020).


    Google Scholar
     

  • Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).


    Google Scholar
     

  • Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteor. Soc. 95, 1431–1443 (2014).


    Google Scholar
     

  • Skidmore, A. K. & Pettorelli, N. Agree on biodiversity metrics to track from space: ecologists and space agencies must forge a global monitoring strategy. Nature 523, 403–406 (2015).

    CAS 

    Google Scholar
     

  • Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).


    Google Scholar
     

  • Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).


    Google Scholar
     

  • Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote. Sens. Environ. 218, 69–88 (2018).


    Google Scholar
     

  • Yang, H. et al. Global patterns of tree wood density. Glob. Change Biol. 30, e17224 (2024).

    CAS 

    Google Scholar
     

  • Wolf, S. et al. Citizen science plant observations encode global trait patterns. Nat. Ecol. Evol. 6, 1850–1859 (2022).


    Google Scholar
     

  • Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103, 1560–1584 (2015).


    Google Scholar
     

  • Bachmann, R., Mizrahi, D., Atanov, A. & Zamir, A. MultiMAE: multi-modal multi-task masked autoencoders. Computer Vision—ECCV 2022 17th Eur. Conf. Proc. XXXVII 348–367 (Springer, 2022).

  • Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).


    Google Scholar
     

  • Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).


    Google Scholar
     

  • Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).


    Google Scholar
     

  • Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science 377, 1431–1435 (2022).

    CAS 

    Google Scholar
     

  • Schmidt, C., Hoban, S., Hunter, M., Paz-Vinas, I. & Garroway, C. J. Genetic diversity and IUCN Red List status. Conserv. Biol. 37, e14064 (2023).


    Google Scholar
     

  • Yates, M. C., Derry, A. M. & Cristescu, M. E. Environmental RNA: a revolution in ecological resolution? Trends Ecol. Evol. 36, 601–609 (2021).

    CAS 

    Google Scholar
     

  • Cristescu, M. E. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).


    Google Scholar
     

  • Hobern, D. BIOSCAN: DNA barcoding to accelerate taxonomy and biogeography for conservation and sustainability. Genome 64, 161–164 (2021).


    Google Scholar
     

  • Li, Z., Cranganore, S. S., Youngblut, N. & Kilbertus, N. Whole genome transformer for gene interaction effects in microbiome habitat specificity. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.05998 (2024).

  • Srivathsan, A. & Meier, R. Scalable, cost-effective, and decentralized DNA barcoding with Oxford nanopore sequencing. Meth. Mol. Biol. 2744, 223–238 (2024).


    Google Scholar
     

  • Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).


    Google Scholar
     

  • Pei, W. et al. Megabarcoding reveals a tale of two very different dark taxa along the same elevational gradient. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591578 (2024).

  • Dalla-Torre, H. et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. Nat. Meth. https://doi.org/10.1038/s41592-024-02523-z (2024).

  • Zhou, Z. et al. DNABERT-S: learning species-aware DNA embedding with genome foundation models. Preprint at arXiv https://doi.org/10.48550/arXiv.2402.08777 (2024).

  • Richard, G. et al. ChatNT: a multimodal conversational agent for DNA, RNA and protein tasks. Preprint at bioRxiv https://doi.org/10.1101/2024.04.30.591835 (2024).

  • Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Meth. 21, 1470–1480 (2024).

    CAS 

    Google Scholar
     

  • Luccioni, S., Jernite, Y. & Strubell, E. Power hungry processing: watts driving the cost of AI deployment? In Proc. 2024 ACM Conf. on Fairness, Accountability, and Transparency (FAccT) 85–99 (Association for Computing Machinery, 2024).



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img