High-resolution habitat suitability maps for all widespread Italian breeding bird species


  • Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328(5982), 1164–1168, https://doi.org/10.1126/science.1187512 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation. Biol. Rev. 97(2), 640–66, https://doi.org/10.1111/brv.12816 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33(9), 676–688, https://doi.org/10.1016/j.tree.2018.06.004 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gardner, T. A. et al. The cost‐effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11(2), 139–150, https://doi.org/10.1111/j.1461-0248.2007.01133.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Marta, S., Lacasella, F., Romano, A. & Ficetola, G. F. Cost-effective spatial sampling designs for field surveys of species distribution. Biodivers. Conserv. 28(11), 2891–2908, https://doi.org/10.1007/s10531-019-01803-x (2019).

    Article 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11(1), 19073, https://doi.org/10.1038/s41598-021-98584-7 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leitão, P. J., Moreira, F. & Osborne, P. E. Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal. Int. J. Geogr. Inf. Syst. 25(3), 439–454, https://doi.org/10.1080/13658816.2010.531020 (2011).

    Article 

    Google Scholar
     

  • Meschini, E. & Frugis. S. Atlante degli uccelli nidificanti in Italia. Supplemento Ricerche Biologia della Selvaggina, vol. XX, (1993).

  • Lardelli, R. et al. Atlante degli uccelli nidificanti in Italia. Edizioni Belvedere. (2022).

  • Engler, J. O. et al. Avian SDMs: current state, challenges, and opportunities. J. Avian Biol. 48(12), 1483–1504, https://doi.org/10.1111/jav.01248 (2017).

    Article 

    Google Scholar
     

  • Huntley, B., Collingham, Y. C., Willis, S. G. & Green, R. E. Potential impacts of climatic change on European breeding birds. PloS one 3(1), e1439, https://doi.org/10.1371/journal.pone.0001439 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9, https://doi.org/10.1038/s41467-019-09519-w (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ferrer Obiol, J. et al. Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change. Nat Commun 16, 3503, https://doi.org/10.1038/s41467-025-58617-5 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regos, A. et al. Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers. distrib. 22(1), 83–96, https://doi.org/10.1111/ddi.12375 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Titeux, N. et al. Biodiversity scenarios neglect future land‐use changes. Glob. Chang. Biol. 22(7), 2505–2515, https://doi.org/10.1111/gcb.13272 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16(12), 1424–1435, https://doi.org/10.1111/ele.12189 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rödder, D., Nekum, S., Cord, A. F. & Engler, J. O. Coupling satellite data with species distribution and connectivity models as a tool for environmental management and planning in matrix-sensitive species. Environ. Manage. 58, 130–143, https://doi.org/10.1007/s00267-016-0698-y (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Razgour, O. Beyond species distribution modeling: a landscape genetics approach to investigating range shifts under future climate change. Ecol. Inform. 30, 250–256, https://doi.org/10.1016/j.ecoinf.2015.05.007 (2015).

    Article 

    Google Scholar
     

  • Giné, G. A. F. & Faria, D. Combining species distribution modeling and field surveys to reappraise the geographic distribution and conservation status of the threatened thin-spined porcupine (Chaetomys subspinosus). PLoS One 13(11), e0207914, https://doi.org/10.1371/journal.pone.0207914 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brambilla, M., Bazzi, G. & Ilahiane, L. The effectiveness of species distribution models in predicting local abundance depends on model grain size. Ecology 105(2), e4224, https://doi.org/10.1002/ecy.4224 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • VanDerWal, J., Shoo, L. P., Johnson, C. N. & Williams, S. E. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am. Nat. 174(2), 282–291, https://doi.org/10.1086/600087 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Van Couwenberghe, R., Collet, C., Pierrat, J. C., Verheyen, K. & Gégout, J. C. Can species distribution models be used to describe plant abundance patterns? Ecography 36(6), 665–674, https://doi.org/10.1111/j.1600-0587.2012.07362.x (2013).

    Article 
    ADS 

    Google Scholar
     

  • Brambilla, M., Gustin, M., Cento, M., Ilahiane, L. & Celada, C. Predicted effects of climate factors on mountain species are not uniform over different spatial scales. J. Avian Biol., 50(9), https://doi.org/10.1111/jav.02162 (2019).

  • Van Strien, A. J., Van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50(6), 1450–1458, https://doi.org/10.1111/1365-2664.12158 (2013).

    Article 

    Google Scholar
     

  • Keller, V. et al. European Breeding Bird Atlas 2. Distribution, Abundance and Change. European Bird Census Council & Lynx Edicions, Barcelona. 967 pp. (2020).

  • Teufelbauer, N. et al. Österreichischer Brutvogelatlas 2013-2018 (1. Aufl.) – 680 S., Wien (Verlag des Naturhistorischen Museum Wien (2023).

  • Knaus, P. et al. Swiss Breeding Bird Atlas 2013–2016. Distribution and population trends of birds in Switzerland and Liechtenstein. Swiss Ornithological Institute, Sempach (2018).

  • Medrano, F., Barros, R., Norambuena, H., Matus, R. & Schmitt, F. Atlas de las aves nidificantes de Chile. Red de Observadores de Avesy Vida Silvestre de Chile, Santiago (2018).

  • Kroeger, S. B. et al. Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds. Sci. Total Environ. 812, 151478, https://doi.org/10.1016/j.scitotenv.2021.151478 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13, https://doi.org/10.1016/j.biocon.2018.02.029 (2018).

    Article 

    Google Scholar
     

  • Assandri, G. et al. Assessing exposure to wind turbines of a migratory raptor through its annual life cycle across continents. Biol. Conserv. 293, 110592, https://doi.org/10.1016/j.biocon.2024.110592 (2024).

    Article 

    Google Scholar
     

  • HBW & BirdLife International. Handbook of the birds of the world and BirdLife International digital checklist of the birds of the world. Ver. 5. http://datazone.birdlife.org/species/taxonomy (2020).

  • Baccetti, N., Fracasso, G. & COI, Commissione Ornitologica Italiana. CISO-COI Check-list of Italian birds – 2020. Avocetta, 45(1), https://doi.org/10.30456/AVO.2021_checklist_en (2021).

  • Brambilla, M. et al. Identifying climate refugia for high‐elevation Alpine birds under current climate warming predictions. Glob. Chang. Biol. 28(14), 4276–4291, https://doi.org/10.1111/gcb.16187 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RETE RURALE NAZIONALE & LIPU/BirdLife Italy. Farmland Bird Index nazionale e andamenti di popolazione delle specie in Italia nel periodo 2000-2023 [On-line document]. https://www.reterurale.it/en (2024).

  • Van Eupen, C. et al. The impact of data quality filtering of opportunistic citizen science data on species distribution model performance. Ecol. Modell. 444, 109453, https://doi.org/10.1016/j.ecolmodel.2021.109453 (2021).

    Article 

    Google Scholar
     

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57, https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).

    Article 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open‐source release of Maxent. Ecography 40(7), 887–893, https://doi.org/10.1111/ecog.03049 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Grimmett, L., Whitsed, R. & Horta, A. Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics. Ecol. Modell. 431, 109194, https://doi.org/10.1016/j.ecolmodel.2020.109194 (2020).

    Article 

    Google Scholar
     

  • Lissovsky, A. A. & Dudov, S. V. Species-distribution modeling: advantages and limitations of its application. 2. MaxEnt. Biol. Bull. Rev. 11(3), 265–275, https://doi.org/10.1134/S2079086421030087 (2021).

    Article 

    Google Scholar
     

  • Yackulic, C. B. et al. Presence‐only modelling using MAXENT: when can we trust the inferences? Methods Ecol. Evol. 4(3), 236–243, https://doi.org/10.1111/2041-210x.12004 (2013).

    Article 

    Google Scholar
     

  • Cobos, M. E., Peterson, A. T., Osorio-Olvera, L. & Jiménez-García, D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 53, 100983, https://doi.org/10.1016/j.ecoinf.2019.100983 (2019).

    Article 

    Google Scholar
     

  • Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205, https://doi.org/10.1111/2041-210X.12261 (2014).

    Article 

    Google Scholar
     

  • Vollering, J., Halvorsen, R., Auestad, I. & Rydgren, K. Bunching up the background betters bias in species distribution models. Ecography 42(10), 1717–1727, https://doi.org/10.1111/ecog.04503 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9(18), 10365–10376, https://doi.org/10.1002/ece3.5555 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Biosci. 54(3), 227–233, https://doi.org/10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2 (2004).

    Article 

    Google Scholar
     

  • Bas, J. M., Pons, P. & Gómez, C. Home range and territory of the Sardinian Warbler Sylvia melanocephala in Mediterranean shrubland. Bird Study 52(2), 137–144, https://doi.org/10.1080/00063650509461383 (2005).

    Article 

    Google Scholar
     

  • Pfeiffer, T. & Meyburg, B. U. GPS tracking of Red Kites (Milvus milvus) reveals fledgling number is negatively correlated with home range size. J. Ornithol. 156, 963–975, https://doi.org/10.1007/s10336-015-1230-5 (2015).

    Article 

    Google Scholar
     

  • Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS one 9(5), e97122, https://doi.org/10.1371/journal.pone.0097122 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4(1), 1–20, https://doi.org/10.1038/sdata.2017.122 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ceresa, F., Kranebitter, P., Monrós, J. S., Rizzolli, F. & Brambilla, M. Disentangling direct and indirect effects of local temperature on abundance of mountain birds and implications for understanding global change impacts. PeerJ 9, e12560, https://doi.org/10.7717/peerj.12560 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978, https://doi.org/10.1002/joc.1276 (2005).

    Article 

    Google Scholar
     

  • Xu, T. & Hutchinson, M. F. New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ. Model. Softw. 40, 267–279, https://doi.org/10.1016/j.envsoft.2012.10.003 (2013).

    Article 

    Google Scholar
     

  • Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: A multi-purpose open source GIS. Environ. Model. Softw. 31, 124–130, https://doi.org/10.1016/j.envsoft.2011.11.014 (2012).

    Article 

    Google Scholar
     

  • European Environment Agency. Corine Land Cover 2012 [On-line document]. https://doi.org/10.2909/a84ae124-c5c5-4577-8e10-511bfe55cc0d (2016).

  • Valerio, F. et al. GEE_xtract: High-quality remote sensing data preparation and extraction for multiple spatio-temporal ecological scaling. Ecol. Inform. 80, 102502, https://doi.org/10.1016/j.ecoinf.2024.102502 (2024).

    Article 

    Google Scholar
     

  • Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093, https://doi.org/10.7717/peerj.3093 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brambilla, M. et al. Potential distribution of a climate sensitive species, the White-winged Snowfinch Montifringilla nivalis in Europe. Bird Conserv. Int. 30(4), 522–532, https://doi.org/10.1017/S0959270920000027 (2020).

    Article 

    Google Scholar
     

  • Bartoń, K. MuMIn: Multi-model inference (1.43. 17). Vienna, Austria: The R Foundation for Statistical Computing. https://cran.r-project.org/package=MuMIn (2020).

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretic approach. Second. NY: Springer-Verlag 63(2020), 10, https://doi.org/10.1007/b97636 (2004).

    Article 

    Google Scholar
     

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46, https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ilahiane, L. Replication data for: “High-resolution habitat suitability maps for all widespread Italian breeding bird species”. UNIMI Dataverse https://doi.org/10.13130/RD_UNIMI/LUC3K6 (2024).

  • Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence‐only data. J. Biogeogr. 40(4), 778–789, https://doi.org/10.1111/jbi.12058 (2013).

    Article 

    Google Scholar
     

  • Vaughan, I. P. & Ormerod, S. J. The continuing challenges of testing species distribution models. J. Appl. Ecol. 42(4), 720–730, https://doi.org/10.1111/j.1365-2664.2005.01052.x (2005).

    Article 

    Google Scholar
     

  • Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49, https://www.jstor.org/stable/44519240 (1997).

    Article 

    Google Scholar
     

  • Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151, https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).

    Article 

    Google Scholar
     

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232, https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).

    Article 

    Google Scholar
     

  • Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697, https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).

    Article 

    Google Scholar
     

  • Guillera‐Arroita, G., Lahoz‐Monfort, J. J. & Elith, J. Maxent is not a presence–absence method: a comment on Thibaud et al. Methods Ecol. Evol. 5(11), 1192–1197, https://doi.org/10.1111/2041-210X.12252 (2014).

    Article 

    Google Scholar
     

  • Dalpasso, A. et al. High nature value farmlands to identify crucial agroecosystems for multitaxa conservation. Biol. Conserv. https://doi.org/10.1016/j.biocon.2025.111094 (2025).

  • Jedlikowski, J., Chibowski, P., Karasek, T. & Brambilla, M. Multi-scale habitat selection in highly territorial bird species: exploring the contribution of nest, territory and landscape levels to site choice in breeding rallids (Aves: Rallidae). Acta Oecol. 73, 10–20, https://doi.org/10.1016/j.actao.2016.02.003 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Brambilla, M. Species data with variables for the paper “Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions”. UNIMI Dataverse https://doi.org/10.13130/RD_UNIMI/ARAI8C (2022).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img