High-resolution habitat suitability maps for all widespread Italian breeding bird species


  • Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328(5982), 1164–1168, https://doi.org/10.1126/science.1187512 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation. Biol. Rev. 97(2), 640–66, https://doi.org/10.1111/brv.12816 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kindsvater, H. K. et al. Overcoming the data crisis in biodiversity conservation. Trends Ecol. Evol. 33(9), 676–688, https://doi.org/10.1016/j.tree.2018.06.004 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gardner, T. A. et al. The cost‐effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11(2), 139–150, https://doi.org/10.1111/j.1461-0248.2007.01133.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Marta, S., Lacasella, F., Romano, A. & Ficetola, G. F. Cost-effective spatial sampling designs for field surveys of species distribution. Biodivers. Conserv. 28(11), 2891–2908, https://doi.org/10.1007/s10531-019-01803-x (2019).

    Article 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11(1), 19073, https://doi.org/10.1038/s41598-021-98584-7 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leitão, P. J., Moreira, F. & Osborne, P. E. Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal. Int. J. Geogr. Inf. Syst. 25(3), 439–454, https://doi.org/10.1080/13658816.2010.531020 (2011).

    Article 

    Google Scholar
     

  • Meschini, E. & Frugis. S. Atlante degli uccelli nidificanti in Italia. Supplemento Ricerche Biologia della Selvaggina, vol. XX, (1993).

  • Lardelli, R. et al. Atlante degli uccelli nidificanti in Italia. Edizioni Belvedere. (2022).

  • Engler, J. O. et al. Avian SDMs: current state, challenges, and opportunities. J. Avian Biol. 48(12), 1483–1504, https://doi.org/10.1111/jav.01248 (2017).

    Article 

    Google Scholar
     

  • Huntley, B., Collingham, Y. C., Willis, S. G. & Green, R. E. Potential impacts of climatic change on European breeding birds. PloS one 3(1), e1439, https://doi.org/10.1371/journal.pone.0001439 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1–9, https://doi.org/10.1038/s41467-019-09519-w (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ferrer Obiol, J. et al. Evolutionarily distinct lineages of a migratory bird of prey show divergent responses to climate change. Nat Commun 16, 3503, https://doi.org/10.1038/s41467-025-58617-5 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regos, A. et al. Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers. distrib. 22(1), 83–96, https://doi.org/10.1111/ddi.12375 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Titeux, N. et al. Biodiversity scenarios neglect future land‐use changes. Glob. Chang. Biol. 22(7), 2505–2515, https://doi.org/10.1111/gcb.13272 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16(12), 1424–1435, https://doi.org/10.1111/ele.12189 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rödder, D., Nekum, S., Cord, A. F. & Engler, J. O. Coupling satellite data with species distribution and connectivity models as a tool for environmental management and planning in matrix-sensitive species. Environ. Manage. 58, 130–143, https://doi.org/10.1007/s00267-016-0698-y (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Razgour, O. Beyond species distribution modeling: a landscape genetics approach to investigating range shifts under future climate change. Ecol. Inform. 30, 250–256, https://doi.org/10.1016/j.ecoinf.2015.05.007 (2015).

    Article 

    Google Scholar
     

  • Giné, G. A. F. & Faria, D. Combining species distribution modeling and field surveys to reappraise the geographic distribution and conservation status of the threatened thin-spined porcupine (Chaetomys subspinosus). PLoS One 13(11), e0207914, https://doi.org/10.1371/journal.pone.0207914 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brambilla, M., Bazzi, G. & Ilahiane, L. The effectiveness of species distribution models in predicting local abundance depends on model grain size. Ecology 105(2), e4224, https://doi.org/10.1002/ecy.4224 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • VanDerWal, J., Shoo, L. P., Johnson, C. N. & Williams, S. E. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. Am. Nat. 174(2), 282–291, https://doi.org/10.1086/600087 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Van Couwenberghe, R., Collet, C., Pierrat, J. C., Verheyen, K. & Gégout, J. C. Can species distribution models be used to describe plant abundance patterns? Ecography 36(6), 665–674, https://doi.org/10.1111/j.1600-0587.2012.07362.x (2013).

    Article 
    ADS 

    Google Scholar
     

  • Brambilla, M., Gustin, M., Cento, M., Ilahiane, L. & Celada, C. Predicted effects of climate factors on mountain species are not uniform over different spatial scales. J. Avian Biol., 50(9), https://doi.org/10.1111/jav.02162 (2019).

  • Van Strien, A. J., Van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50(6), 1450–1458, https://doi.org/10.1111/1365-2664.12158 (2013).

    Article 

    Google Scholar
     

  • Keller, V. et al. European Breeding Bird Atlas 2. Distribution, Abundance and Change. European Bird Census Council & Lynx Edicions, Barcelona. 967 pp. (2020).

  • Teufelbauer, N. et al. Österreichischer Brutvogelatlas 2013-2018 (1. Aufl.) – 680 S., Wien (Verlag des Naturhistorischen Museum Wien (2023).

  • Knaus, P. et al. Swiss Breeding Bird Atlas 2013–2016. Distribution and population trends of birds in Switzerland and Liechtenstein. Swiss Ornithological Institute, Sempach (2018).

  • Medrano, F., Barros, R., Norambuena, H., Matus, R. & Schmitt, F. Atlas de las aves nidificantes de Chile. Red de Observadores de Avesy Vida Silvestre de Chile, Santiago (2018).

  • Kroeger, S. B. et al. Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds. Sci. Total Environ. 812, 151478, https://doi.org/10.1016/j.scitotenv.2021.151478 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13, https://doi.org/10.1016/j.biocon.2018.02.029 (2018).

    Article 

    Google Scholar
     

  • Assandri, G. et al. Assessing exposure to wind turbines of a migratory raptor through its annual life cycle across continents. Biol. Conserv. 293, 110592, https://doi.org/10.1016/j.biocon.2024.110592 (2024).

    Article 

    Google Scholar
     

  • HBW & BirdLife International. Handbook of the birds of the world and BirdLife International digital checklist of the birds of the world. Ver. 5. http://datazone.birdlife.org/species/taxonomy (2020).

  • Baccetti, N., Fracasso, G. & COI, Commissione Ornitologica Italiana. CISO-COI Check-list of Italian birds – 2020. Avocetta, 45(1), https://doi.org/10.30456/AVO.2021_checklist_en (2021).

  • Brambilla, M. et al. Identifying climate refugia for high‐elevation Alpine birds under current climate warming predictions. Glob. Chang. Biol. 28(14), 4276–4291, https://doi.org/10.1111/gcb.16187 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RETE RURALE NAZIONALE & LIPU/BirdLife Italy. Farmland Bird Index nazionale e andamenti di popolazione delle specie in Italia nel periodo 2000-2023 [On-line document]. https://www.reterurale.it/en (2024).

  • Van Eupen, C. et al. The impact of data quality filtering of opportunistic citizen science data on species distribution model performance. Ecol. Modell. 444, 109453, https://doi.org/10.1016/j.ecolmodel.2021.109453 (2021).

    Article 

    Google Scholar
     

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57, https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).

    Article 

    Google Scholar
     

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open‐source release of Maxent. Ecography 40(7), 887–893, https://doi.org/10.1111/ecog.03049 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Grimmett, L., Whitsed, R. & Horta, A. Presence-only species distribution models are sensitive to sample prevalence: Evaluating models using spatial prediction stability and accuracy metrics. Ecol. Modell. 431, 109194, https://doi.org/10.1016/j.ecolmodel.2020.109194 (2020).

    Article 

    Google Scholar
     

  • Lissovsky, A. A. & Dudov, S. V. Species-distribution modeling: advantages and limitations of its application. 2. MaxEnt. Biol. Bull. Rev. 11(3), 265–275, https://doi.org/10.1134/S2079086421030087 (2021).

    Article 

    Google Scholar
     

  • Yackulic, C. B. et al. Presence‐only modelling using MAXENT: when can we trust the inferences? Methods Ecol. Evol. 4(3), 236–243, https://doi.org/10.1111/2041-210x.12004 (2013).

    Article 

    Google Scholar
     

  • Cobos, M. E., Peterson, A. T., Osorio-Olvera, L. & Jiménez-García, D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 53, 100983, https://doi.org/10.1016/j.ecoinf.2019.100983 (2019).

    Article 

    Google Scholar
     

  • Muscarella, R. et al. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205, https://doi.org/10.1111/2041-210X.12261 (2014).

    Article 

    Google Scholar
     

  • Vollering, J., Halvorsen, R., Auestad, I. & Rydgren, K. Bunching up the background betters bias in species distribution models. Ecography 42(10), 1717–1727, https://doi.org/10.1111/ecog.04503 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 9(18), 10365–10376, https://doi.org/10.1002/ece3.5555 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Biosci. 54(3), 227–233, https://doi.org/10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2 (2004).

    Article 

    Google Scholar
     

  • Bas, J. M., Pons, P. & Gómez, C. Home range and territory of the Sardinian Warbler Sylvia melanocephala in Mediterranean shrubland. Bird Study 52(2), 137–144, https://doi.org/10.1080/00063650509461383 (2005).

    Article 

    Google Scholar
     

  • Pfeiffer, T. & Meyburg, B. U. GPS tracking of Red Kites (Milvus milvus) reveals fledgling number is negatively correlated with home range size. J. Ornithol. 156, 963–975, https://doi.org/10.1007/s10336-015-1230-5 (2015).

    Article 

    Google Scholar
     

  • Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS one 9(5), e97122, https://doi.org/10.1371/journal.pone.0097122 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4(1), 1–20, https://doi.org/10.1038/sdata.2017.122 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ceresa, F., Kranebitter, P., Monrós, J. S., Rizzolli, F. & Brambilla, M. Disentangling direct and indirect effects of local temperature on abundance of mountain birds and implications for understanding global change impacts. PeerJ 9, e12560, https://doi.org/10.7717/peerj.12560 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978, https://doi.org/10.1002/joc.1276 (2005).

    Article 

    Google Scholar
     

  • Xu, T. & Hutchinson, M. F. New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ. Model. Softw. 40, 267–279, https://doi.org/10.1016/j.envsoft.2012.10.003 (2013).

    Article 

    Google Scholar
     

  • Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: A multi-purpose open source GIS. Environ. Model. Softw. 31, 124–130, https://doi.org/10.1016/j.envsoft.2011.11.014 (2012).

    Article 

    Google Scholar
     

  • European Environment Agency. Corine Land Cover 2012 [On-line document]. https://doi.org/10.2909/a84ae124-c5c5-4577-8e10-511bfe55cc0d (2016).

  • Valerio, F. et al. GEE_xtract: High-quality remote sensing data preparation and extraction for multiple spatio-temporal ecological scaling. Ecol. Inform. 80, 102502, https://doi.org/10.1016/j.ecoinf.2024.102502 (2024).

    Article 

    Google Scholar
     

  • Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093, https://doi.org/10.7717/peerj.3093 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brambilla, M. et al. Potential distribution of a climate sensitive species, the White-winged Snowfinch Montifringilla nivalis in Europe. Bird Conserv. Int. 30(4), 522–532, https://doi.org/10.1017/S0959270920000027 (2020).

    Article 

    Google Scholar
     

  • Bartoń, K. MuMIn: Multi-model inference (1.43. 17). Vienna, Austria: The R Foundation for Statistical Computing. https://cran.r-project.org/package=MuMIn (2020).

  • Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference. A practical information-theoretic approach. Second. NY: Springer-Verlag 63(2020), 10, https://doi.org/10.1007/b97636 (2004).

    Article 

    Google Scholar
     

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27–46, https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ilahiane, L. Replication data for: “High-resolution habitat suitability maps for all widespread Italian breeding bird species”. UNIMI Dataverse https://doi.org/10.13130/RD_UNIMI/LUC3K6 (2024).

  • Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence‐only data. J. Biogeogr. 40(4), 778–789, https://doi.org/10.1111/jbi.12058 (2013).

    Article 

    Google Scholar
     

  • Vaughan, I. P. & Ormerod, S. J. The continuing challenges of testing species distribution models. J. Appl. Ecol. 42(4), 720–730, https://doi.org/10.1111/j.1365-2664.2005.01052.x (2005).

    Article 

    Google Scholar
     

  • Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49, https://www.jstor.org/stable/44519240 (1997).

    Article 

    Google Scholar
     

  • Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151, https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).

    Article 

    Google Scholar
     

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232, https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).

    Article 

    Google Scholar
     

  • Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697, https://doi.org/10.1146/annurev.ecolsys.110308.120159 (2009).

    Article 

    Google Scholar
     

  • Guillera‐Arroita, G., Lahoz‐Monfort, J. J. & Elith, J. Maxent is not a presence–absence method: a comment on Thibaud et al. Methods Ecol. Evol. 5(11), 1192–1197, https://doi.org/10.1111/2041-210X.12252 (2014).

    Article 

    Google Scholar
     

  • Dalpasso, A. et al. High nature value farmlands to identify crucial agroecosystems for multitaxa conservation. Biol. Conserv. https://doi.org/10.1016/j.biocon.2025.111094 (2025).

  • Jedlikowski, J., Chibowski, P., Karasek, T. & Brambilla, M. Multi-scale habitat selection in highly territorial bird species: exploring the contribution of nest, territory and landscape levels to site choice in breeding rallids (Aves: Rallidae). Acta Oecol. 73, 10–20, https://doi.org/10.1016/j.actao.2016.02.003 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Brambilla, M. Species data with variables for the paper “Identifying climate refugia for high-elevation Alpine birds under current climate warming predictions”. UNIMI Dataverse https://doi.org/10.13130/RD_UNIMI/ARAI8C (2022).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Attenborough’s echidna rediscovered by combining Indigenous knowledge with camera-trapping

    Attenborough’s long-beaked echidna still survives in the Cyclops MountainsWe didn’t capture any photographic evidence of Z. attenboroughi during the 2022 survey; from the...
    Biodiversity
    4
    minutes

    Impact of transfer learning methods and dataset characteristics on generalization in...

    The data processing, methodology, and evaluation workflow for this study are outlined in Fig. 1.(Left) Distribution of the number of recordings per species in...
    Biodiversity
    18
    minutes

    Global intraspecific diversity of marine forests of brown macroalgae predicted by...

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. https://doi.org/10.1038/nrg.2016.58 (2016).Maggs, C. A. et al. Evaluating signatures of...
    Biodiversity
    9
    minutes

    Insect trafficking poses a risk to wildlife and human health

    Four men were recently arrested and fined for attempting to smuggle more than 5,000 ants out of Kenya. Aiming...
    Biodiversity
    3
    minutes
    spot_imgspot_img