Illuminating ecology and distribution of the rare fungus Phellinidium pouzarii in the Bavarian Forest National Park


  • Niego, A. G. T. et al. The contribution of fungi to the global economy. Fungal Divers. 121, 95–137 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dahlberg, A., Genney, D. R. & Heilmann-Clausen, J. Developing a comprehensive strategy for fungal conservation in Europe: Current status and future needs. Fungal Ecol. 3, 50–64 (2010).

    Article 

    Google Scholar
     

  • Bässler, C., Karasch, P. & Leibl, F. The forgotten Kingdom Im Naturschutz: Großschutzgebiete zum Erhalt der diversität Holzbewohnender Pilze. Biol. Usererer Zeit 48(6), 374–381 (2018).

    Article 

    Google Scholar
     

  • May, T. W. et al. Recognition of the discipline of conservation mycology. Conserv. Biol. 33, 733–736 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Molina, R. Protecting rare, little known, old-growth forest-associated fungi in the Pacific Northwest USA: A case study in fungal conservation. Mycol. Res. 112, 613–638 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ovaskainen, O. et al. Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J. 7, 1696–1709 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. 94, 2101–2137 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Peay, K. G., KennedyP. G. & Bruns, T. D. Fungal community ecology: A hybrid Beast with a molecular master. BioScience 58, 799–810 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Gordon, M. & Van Norman, K. Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands. North. Am. Fungi. 10, 1–28 (2015).


    Google Scholar
     

  • Runnel, K. et al. Aerial eDNA contributes vital information for fungal biodiversity assessment. J. Appl. Ecol. 61, 2418–2429 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Mauvisseau, Q. et al. Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Sci. Rep. 9, 580 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Burian, A. et al. Improving the reliability of eDNA data interpretation. Mol. Ecol. Resour. 21, 1422–1433 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Holec, J., Kunca, V., Vampola, P. & Beran, M. Where to look for basidiomata of Phellinidium pouzarii (Fungi, Hymenochaetaceae), a rare European polypore of montane old-growth forests with fir (Abies)? Nova Hedwig. 109, 379–397 (2019).

    Article 

    Google Scholar
     

  • Ryvarden, L. & Melo, I. Poroid Fungi of Europe (Fungiflora, 2014).

  • Bohoslavets, O. M. & Prydiuk, M. P. New records of rare wood-inhabiting fungi from the Ukrainian Carpathians. Czech Mycol. 75, 61–83 (2023).

    Article 

    Google Scholar
     

  • Dämon, W. & Krisai-Greilhuber, I. Die Pilze Österreichs – Verzeichnis und Rote Liste. Makromyzeten [in German]. (Österreichische Mykologische Gesellschaft, Wien, 2017)

  • Holec, J. & Beran, M. Red list of fungi (Macromycetes) of the Czech Republic. Příroda 24, 1–282 (2006).

    MATH 

    Google Scholar
     

  • Dämmrich, F. et al. Rote Liste der Großpilze und vorläufige Gesamtartenliste der Ständer-und Schlauchpilze (Basidiomycota und Ascomycota) Deutschlands mit Ausnahme der Flechten und der phytoparasitischen Kleinpilze. BfN Hrsg Rote Liste Gefährdeter Tiere Pflanz Pilze Dtschl 8, 444 (2016).

  • Lizoň, P. Red list of Slovak fungi. Catathelasma 2, 25–33 (2001).


    Google Scholar
     

  • Jahn, H. Pilze an Weißtanne (Abies alba). Westfäl Pilzbriefe Pilzkd Arbeitsgemeinschaft Westfal 7 (1968).

  • Leonhardt, S., Kellner, H., Hofrichter, M. & Bässler, C. Conservation Strategy for Phellinidium Pouzarii, a Rare Fungus of the Bavarian Forest National Park. in 2nd International Conference on Forests (Neuschönau, Germany, 2017).

  • Ruiz-Dueñas, F. J. et al. Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38, 1428–1446 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Fernández-Fueyo, E. et al. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi. Acta Cryst. D 70, 3253–3265 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Zhao, H. et al. Insights into the ecological diversification of the Hymenochaetales based on comparative genomics and phylogenomics with an emphasis on Coltricia. Genome Biol. Evol. 15, evad136 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hettiarachchi, D. S., Locher, C. & Longmore, R. B. Antibacterial compounds from the root of the Indigenous Australian medicinal plant Carissa lanceolata R.Br. Nat. Prod. Res. 25, 1388–1395 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, D., Robson, G. D. & Trinci, A. P. 21st Century Guidebook to Fungi (Cambridge University Press, 2020).

  • Rieker, D. et al. How to best detect threatened deadwood fungi – comparing metabarcoding and fruit body surveys. Biol. Conserv. 296, 110696 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Blaschke, M., Siemonsmeier, A., Harjes, J., Okach, D. O. & Rambold, G. Comparison of survey methods for fungi using metabarcoding and fruit body inventories in an altitudinal gradient. Arch. Microbiol. 205, 269 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frøslev, T. G. et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol. Conserv. 233, 201–212 (2019).

    Article 

    Google Scholar
     

  • van der Linde, S., Holden, E., Parkin, P. I., Alexander, I. J. & Anderson, I. C. Now you see it, now you don’t: The challenge of detecting, monitoring and conserving ectomycorrhizal fungi. Fungal Ecol. 5, 633–640 (2012).

    Article 

    Google Scholar
     

  • Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 701–712 (2013).

  • European Commission: Joint Research Centre. et al. Mapping and Assessment of Primary and Old-Growth Forests in Europe. (Publications Office, Luxembourg, 2021).


    Google Scholar
     

  • Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 120–124 (2016).

  • Bässler, C. & Müller, J. Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden. Fungal Biol. 114, 129–133 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Y. J. et al. Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem. 124, 298–302 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wu, S., Zorn, H., Krings, U. & Berger, R. G. Characteristic volatiles from young and aged fruiting bodies of wild Polyporus Sulfureus (Bull.:Fr.) Fr. J. Agric. Food Chem. 53, 4524–4528 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birkinshaw, J. H., Bracken, A. & Findlay, W. P. K. Biochemistry of the wood-rotting fungi: 4. Metabolic products of Trametes suaveolens (Linn.) Fr. Biochem. J. 38, 131 (1944).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wood, W. F., DeShazer, D. A. & Largent, D. L. The identity and metabolic fate of volatiles responsible for the odor of Hydnellum suaveolens. Mycologia (1988).

  • Song, X. et al. Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS. LWT 184, 115011 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dickschat, J. S. Fungal volatiles – a survey from edible mushrooms to moulds. Nat. Prod. Rep. 34, 310–328 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, T. S. & Landolt, P. J. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J. Chem. Ecol. 39, 860–868 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Farh, M. E. A. & Jeon, J. Roles of fungal volatiles from perspective of distinct lifestyles in filamentous Fungi. Plant. Pathol. J. 36, 193–203 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lilley, B. D. & Brewer, J. H. The selective antibacterial action of phenylethyl alcohol. J. Am. Pharm. Assoc. Sci. Ed. 42, 6–8 (1953).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Farbo, M. G. et al. Effect of yeast volatile organic compounds on Ochratoxin A-producing Aspergillus Carbonarius and A. ochraceus. Int. J. Food Microbiol. 284, 1–10 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, X. et al. ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-Phenylethanol against Botrytis cinerea. J. Agric. Food Chem. 70, 14468–14479 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevenson, B. S. & Schmidt, T. M. Life history implications of rRNA gene copy number in Escherichia coli. Appl. Environ. Microbiol. 70, 6670–6677 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lofgren, L. A. et al. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol. Ecol. 28, 721–730 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Heurich, M., Beudert, B., Rall, H. & Křenová, Z. National parks as model regions for interdisciplinary Long-Term ecological research: The Bavarian forest and Šumavá National parks underway to transboundary ecosystem research. in Long-Term Ecological Research: Between Theory and Application (eds. Müller, F., Baessler, C., Schubert, H. & Klotz, S.) 327–344. https://doi.org/10.1007/978-90-481-8782-9_23 (Springer Netherlands, 2010).

    Chapter 

    Google Scholar
     

  • van der Knaap, W. O. et al. Vegetation and disturbance history of the Bavarian forest National park, Germany. Veg. Hist. Archaeobotany. 29, 277–295 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Heilmann-Clausen, J. A gradient analysis of communities of macrofungi and slime moulds on decaying Beech logs. Mycol. Res. 105, 575–596 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. in 9th Annual Genomics of Energy & Environment Meeting (US, 2014).

  • Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. in German Conference on Bioinformatics (1999).

  • Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–312 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zheng, J. et al. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 51, W115–W121 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the illumina HiSeq and miseq platforms. ISME J. 6, 1621–1624 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Leonhardt, S. et al. Molecular fungal community and its decomposition activity in sapwood and Heartwood of 13 temperate European tree species. PLoS ONE. 14, 1–21 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Moll, J. et al. First evidence that nematode communities in Deadwood are related to tree species identity and to co-occurring fungi and prokaryotes. Microorganisms 9, 1454 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Weißbecker, C., Schnabel, B. & Heintz-Buschart, A. Dadasnake, a snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology. GigaScience 9, giaa135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High resolution sample interference from illumina amplicon data. Nat. Methods. 7, 581–583 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandt, M. I. et al. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 21, 1904–1921 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Schloss, P. D. et al. Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yilmaz, P. et al. The SILVA and “All-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article 

    Google Scholar
     

  • Pebesma, E. Simple features for R: Standardized support for Spatial vector data. R J. 10, 439–446 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Mark, P., Bob, R., Robin, L. & Maëlle, S. Osmdata J. Open. Source Softw. 2, 305 (2017).

    Article 

    Google Scholar
     

  • Gilardi, A. & Lovelace, R. Osmextract: Download and Import Open Street Map Data Extracts. https://CRAN.R-project.org/package=osmextract (2022).

  • Hollister, J. et al. Elevatr: Access Elevation Data from Various Apis. https://github.com/jhollist/elevatr/. https://doi.org/10.5281/zenodo.8335450 (2023).

  • Okasanen, J. et al. vegan: Community Ecology Package. (2019).

  • Berends, M. S. et al. AMR: An R package for working with antimicrobial resistance data. J. Stat. Softw. 104, 1–31 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Grigoriev, I. V. et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sønstebø, J. H. et al. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol. Ecol. 31, 1963–1979 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Floudas, D. et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes

    Parasitism as a driver of host diversification

    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article  ...
    Biodiversity
    15
    minutes

    Spillovers and legacies of land management on temperate woodland biodiversity

    MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).Tscharntke, T. et al. Landscape moderation of biodiversity patterns...
    Biodiversity
    10
    minutes
    spot_imgspot_img