Niego, A. G. T. et al. The contribution of fungi to the global economy. Fungal Divers. 121, 95–137 (2023).
Dahlberg, A., Genney, D. R. & Heilmann-Clausen, J. Developing a comprehensive strategy for fungal conservation in Europe: Current status and future needs. Fungal Ecol. 3, 50–64 (2010).
Bässler, C., Karasch, P. & Leibl, F. The forgotten Kingdom Im Naturschutz: Großschutzgebiete zum Erhalt der diversität Holzbewohnender Pilze. Biol. Usererer Zeit 48(6), 374–381 (2018).
May, T. W. et al. Recognition of the discipline of conservation mycology. Conserv. Biol. 33, 733–736 (2019).
Molina, R. Protecting rare, little known, old-growth forest-associated fungi in the Pacific Northwest USA: A case study in fungal conservation. Mycol. Res. 112, 613–638 (2008).
Ovaskainen, O. et al. Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J. 7, 1696–1709 (2013).
Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. 94, 2101–2137 (2019).
Peay, K. G., KennedyP. G. & Bruns, T. D. Fungal community ecology: A hybrid Beast with a molecular master. BioScience 58, 799–810 (2008).
Gordon, M. & Van Norman, K. Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands. North. Am. Fungi. 10, 1–28 (2015).
Runnel, K. et al. Aerial eDNA contributes vital information for fungal biodiversity assessment. J. Appl. Ecol. 61, 2418–2429 (2024).
Mauvisseau, Q. et al. Influence of accuracy, repeatability and detection probability in the reliability of species-specific eDNA based approaches. Sci. Rep. 9, 580 (2019).
Burian, A. et al. Improving the reliability of eDNA data interpretation. Mol. Ecol. Resour. 21, 1422–1433 (2021).
Holec, J., Kunca, V., Vampola, P. & Beran, M. Where to look for basidiomata of Phellinidium pouzarii (Fungi, Hymenochaetaceae), a rare European polypore of montane old-growth forests with fir (Abies)? Nova Hedwig. 109, 379–397 (2019).
Ryvarden, L. & Melo, I. Poroid Fungi of Europe (Fungiflora, 2014).
Bohoslavets, O. M. & Prydiuk, M. P. New records of rare wood-inhabiting fungi from the Ukrainian Carpathians. Czech Mycol. 75, 61–83 (2023).
Dämon, W. & Krisai-Greilhuber, I. Die Pilze Österreichs – Verzeichnis und Rote Liste. Makromyzeten [in German]. (Österreichische Mykologische Gesellschaft, Wien, 2017)
Holec, J. & Beran, M. Red list of fungi (Macromycetes) of the Czech Republic. Příroda 24, 1–282 (2006).
Dämmrich, F. et al. Rote Liste der Großpilze und vorläufige Gesamtartenliste der Ständer-und Schlauchpilze (Basidiomycota und Ascomycota) Deutschlands mit Ausnahme der Flechten und der phytoparasitischen Kleinpilze. BfN Hrsg Rote Liste Gefährdeter Tiere Pflanz Pilze Dtschl 8, 444 (2016).
Lizoň, P. Red list of Slovak fungi. Catathelasma 2, 25–33 (2001).
Jahn, H. Pilze an Weißtanne (Abies alba). Westfäl Pilzbriefe Pilzkd Arbeitsgemeinschaft Westfal 7 (1968).
Leonhardt, S., Kellner, H., Hofrichter, M. & Bässler, C. Conservation Strategy for Phellinidium Pouzarii, a Rare Fungus of the Bavarian Forest National Park. in 2nd International Conference on Forests (Neuschönau, Germany, 2017).
Ruiz-Dueñas, F. J. et al. Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38, 1428–1446 (2021).
Fernández-Fueyo, E. et al. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi. Acta Cryst. D 70, 3253–3265 (2014).
Zhao, H. et al. Insights into the ecological diversification of the Hymenochaetales based on comparative genomics and phylogenomics with an emphasis on Coltricia. Genome Biol. Evol. 15, evad136 (2023).
Hettiarachchi, D. S., Locher, C. & Longmore, R. B. Antibacterial compounds from the root of the Indigenous Australian medicinal plant Carissa lanceolata R.Br. Nat. Prod. Res. 25, 1388–1395 (2011).
Moore, D., Robson, G. D. & Trinci, A. P. 21st Century Guidebook to Fungi (Cambridge University Press, 2020).
Rieker, D. et al. How to best detect threatened deadwood fungi – comparing metabarcoding and fruit body surveys. Biol. Conserv. 296, 110696 (2024).
Blaschke, M., Siemonsmeier, A., Harjes, J., Okach, D. O. & Rambold, G. Comparison of survey methods for fungi using metabarcoding and fruit body inventories in an altitudinal gradient. Arch. Microbiol. 205, 269 (2023).
Frøslev, T. G. et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol. Conserv. 233, 201–212 (2019).
van der Linde, S., Holden, E., Parkin, P. I., Alexander, I. J. & Anderson, I. C. Now you see it, now you don’t: The challenge of detecting, monitoring and conserving ectomycorrhizal fungi. Fungal Ecol. 5, 633–640 (2012).
Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 701–712 (2013).
European Commission: Joint Research Centre. et al. Mapping and Assessment of Primary and Old-Growth Forests in Europe. (Publications Office, Luxembourg, 2021).
Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 120–124 (2016).
Bässler, C. & Müller, J. Importance of natural disturbance for recovery of the rare polypore Antrodiella citrinella Niemelä & Ryvarden. Fungal Biol. 114, 129–133 (2010).
Zhu, Y. J. et al. Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem. 124, 298–302 (2011).
Wu, S., Zorn, H., Krings, U. & Berger, R. G. Characteristic volatiles from young and aged fruiting bodies of wild Polyporus Sulfureus (Bull.:Fr.) Fr. J. Agric. Food Chem. 53, 4524–4528 (2005).
Birkinshaw, J. H., Bracken, A. & Findlay, W. P. K. Biochemistry of the wood-rotting fungi: 4. Metabolic products of Trametes suaveolens (Linn.) Fr. Biochem. J. 38, 131 (1944).
Wood, W. F., DeShazer, D. A. & Largent, D. L. The identity and metabolic fate of volatiles responsible for the odor of Hydnellum suaveolens. Mycologia (1988).
Song, X. et al. Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS. LWT 184, 115011 (2023).
Dickschat, J. S. Fungal volatiles – a survey from edible mushrooms to moulds. Nat. Prod. Rep. 34, 310–328 (2017).
Davis, T. S. & Landolt, P. J. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J. Chem. Ecol. 39, 860–868 (2013).
Farh, M. E. A. & Jeon, J. Roles of fungal volatiles from perspective of distinct lifestyles in filamentous Fungi. Plant. Pathol. J. 36, 193–203 (2020).
Lilley, B. D. & Brewer, J. H. The selective antibacterial action of phenylethyl alcohol. J. Am. Pharm. Assoc. Sci. Ed. 42, 6–8 (1953).
Farbo, M. G. et al. Effect of yeast volatile organic compounds on Ochratoxin A-producing Aspergillus Carbonarius and A. ochraceus. Int. J. Food Microbiol. 284, 1–10 (2018).
Zou, X. et al. ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-Phenylethanol against Botrytis cinerea. J. Agric. Food Chem. 70, 14468–14479 (2022).
Stevenson, B. S. & Schmidt, T. M. Life history implications of rRNA gene copy number in Escherichia coli. Appl. Environ. Microbiol. 70, 6670–6677 (2004).
Lofgren, L. A. et al. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol. Ecol. 28, 721–730 (2019).
Heurich, M., Beudert, B., Rall, H. & Křenová, Z. National parks as model regions for interdisciplinary Long-Term ecological research: The Bavarian forest and Šumavá National parks underway to transboundary ecosystem research. in Long-Term Ecological Research: Between Theory and Application (eds. Müller, F., Baessler, C., Schubert, H. & Klotz, S.) 327–344. https://doi.org/10.1007/978-90-481-8782-9_23 (Springer Netherlands, 2010).
van der Knaap, W. O. et al. Vegetation and disturbance history of the Bavarian forest National park, Germany. Veg. Hist. Archaeobotany. 29, 277–295 (2020).
Heilmann-Clausen, J. A gradient analysis of communities of macrofungi and slime moulds on decaying Beech logs. Mycol. Res. 105, 575–596 (2001).
Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325 (2006).
Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. in 9th Annual Genomics of Energy & Environment Meeting (US, 2014).
Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. in German Conference on Bioinformatics (1999).
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–312 (2004).
Zheng, J. et al. dbCAN3: Automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res. 51, W115–W121 (2023).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the illumina HiSeq and miseq platforms. ISME J. 6, 1621–1624 (2012).
Leonhardt, S. et al. Molecular fungal community and its decomposition activity in sapwood and Heartwood of 13 temperate European tree species. PLoS ONE. 14, 1–21 (2019).
Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).
Moll, J. et al. First evidence that nematode communities in Deadwood are related to tree species identity and to co-occurring fungi and prokaryotes. Microorganisms 9, 1454 (2021).
Weißbecker, C., Schnabel, B. & Heintz-Buschart, A. Dadasnake, a snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology. GigaScience 9, giaa135 (2020).
Callahan, B. J. et al. DADA2: High resolution sample interference from illumina amplicon data. Nat. Methods. 7, 581–583 (2016).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Brandt, M. I. et al. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 21, 1904–1921 (2021).
Schloss, P. D. et al. Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Yilmaz, P. et al. The SILVA and “All-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).
Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).
Pebesma, E. Simple features for R: Standardized support for Spatial vector data. R J. 10, 439–446 (2018).
Mark, P., Bob, R., Robin, L. & Maëlle, S. Osmdata J. Open. Source Softw. 2, 305 (2017).
Gilardi, A. & Lovelace, R. Osmextract: Download and Import Open Street Map Data Extracts. https://CRAN.R-project.org/package=osmextract (2022).
Hollister, J. et al. Elevatr: Access Elevation Data from Various Apis. https://github.com/jhollist/elevatr/. https://doi.org/10.5281/zenodo.8335450 (2023).
Okasanen, J. et al. vegan: Community Ecology Package. (2019).
Berends, M. S. et al. AMR: An R package for working with antimicrobial resistance data. J. Stat. Softw. 104, 1–31 (2022).
Grigoriev, I. V. et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).
Sønstebø, J. H. et al. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol. Ecol. 31, 1963–1979 (2022).
Floudas, D. et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).
Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).