Impacts of deglaciation on biodiversity and ecosystem function


  • Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article 

    Google Scholar
     

  • Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES https://www.ipbes.net/global-assessment (2019).

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Roe, G. H., Christian, J. E. & Marzeion, B. On the attribution of industrial-era glacier mass loss to anthropogenic climate change. Cryosphere 15, 1889–1905 (2021).

    Article 

    Google Scholar
     

  • Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article 
    CAS 

    Google Scholar
     

  • IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).

  • Cook, S. J. et al. Committed ice loss in the European Alps until 2050 using a deep-learning-aided 3D ice-flow model with data assimilation. Geophys. Res. Lett. 50, e2023GL105029 (2023).

    Article 

    Google Scholar
     

  • Huss, M. et al. Toward mountains without permanent snow and ice. Earth Future 5, 418–435 (2017).

    Article 

    Google Scholar
     

  • Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article 

    Google Scholar
     

  • Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017). This paper presents a synthesis of how glacier loss alters hydrological conditions and biogeochemical fluxes and in turn affects biodiversity and ecosystem services.

    Article 
    CAS 

    Google Scholar
     

  • Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).

    Article 

    Google Scholar
     

  • Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018). Functional trait analyses that reveal the mechanisms underlying invertebrate diversity responses to reduced glacier cover.

    Article 

    Google Scholar
     

  • Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7, 841–851 (2023). This study presents species distribution models that indicate upstream shifts, extinctions or potential refugia for river invertebrates after glacier retreat.

    Article 
    CAS 

    Google Scholar
     

  • Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).

    Article 

    Google Scholar
     

  • Eichel, J. in Geomorphology of Proglacial Systems (eds Heckmann, T. & Morche, D.) 327–349 (Springer, 2019).

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article 

    Google Scholar
     

  • Erschbamer, B. & Caccianiga, M. S. in Progress in Botany Vol. 78 (eds Cánovas, F. M., Lüttge, U. & Matyssek, R.) 259–284 (Springer, 2016).

  • Ficetola, G. F. et al. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 52, 405–426 (2021).

    Article 

    Google Scholar
     

  • Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336–342 (2024). Environmental DNA metabarcoding reveals patterns of increasing richness for bacteria, fungi, plants and animals for a few hundred years after glacier retreat.

    Article 
    CAS 

    Google Scholar
     

  • Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 4, 686–687 (2020).

    Article 

    Google Scholar
     

  • Losapio, G. et al. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 8, 520 (2021).

    Article 

    Google Scholar
     

  • Cantera, I. et al. The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat. Nat. Plants 10, 256–267 (2024).

    Article 

    Google Scholar
     

  • Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565 (2017). This study demonstrates the role of glacier algae in supporting microbial diversity and influencing productivity and surface albedo.

    Article 
    CAS 

    Google Scholar
     

  • Khelidj, N., Caccianiga, M., Cerabolini, B. E. L., Tampucci, D. & Losapio, G. Glacier extinction homogenizes functional diversity via ecological succession. J. Veg. Sci. 35, e13312 (2024).

    Article 

    Google Scholar
     

  • Bosson, J. B. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023). A study that provides projections of glacier loss and associated emergence of aquatic and terrestrial habitats across poorly protected glaciers.

    Article 
    CAS 

    Google Scholar
     

  • Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745–762 (2015).

    Article 

    Google Scholar
     

  • Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, L. G. et al. The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records. Glob. Planet. Change 203, 103538 (2021).

    Article 

    Google Scholar
     

  • Huss, M. & Fischer, M. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci. 4, 34 (2016).

    Article 

    Google Scholar
     

  • Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).

    Article 

    Google Scholar
     

  • Hop, H. et al. Tidewater glaciers as “climate refugia” for zooplankton-dependent food web in Kongsfjorden, Svalbard. Front. Mar. Sci. 10, 1161912 (2023). This study provides evidence of glacial plumes as ‘climate refugia’ for seabirds foraging on zooplankton.

    Article 

    Google Scholar
     

  • Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Article 

    Google Scholar
     

  • Clitherow, L. R., Carrivick, J. L. & Brown, L. E. Food web structure in a harsh glacier-fed river. PLoS ONE 8, e60899 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).

    Article 

    Google Scholar
     

  • Ezzat, L. et al. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 637, 622–630 (2025). This study finds that the microbiome of glacier-fed stream differs from that of the cryosphere by hosting bacterial variants endemic to a mountain range.

    Article 
    CAS 

    Google Scholar
     

  • Levy, A., Robinson, Z., Krause, S., Waller, R. & Weatherill, J. Long-term variability of proglacial groundwater-fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland. Earth Surf. Process. Landf. 40, 981–994 (2015).

    Article 

    Google Scholar
     

  • He, Q. et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau. J. Hydrol. Reg. Stud. 47, 101368 (2023).

    Article 

    Google Scholar
     

  • Menzies, J. in The SAGE Handbook of Geomorphology (eds Gregory, K. J. & Goudie, A. S.) 378–392 (Sage, 2011).

  • Eichel, J., Draebing, D., Winkler, S. & Meyer, N. Similar vegetation-geomorphic disturbance feedbacks shape unstable glacier forelands across mountain regions. Ecosphere 14, e4404 (2023).

    Article 

    Google Scholar
     

  • Benn, D. & Evans, D. Glaciers and Glaciation (Routledge, 2014).

  • Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3, 10 (2017).

    Article 

    Google Scholar
     

  • Kohler, T. J. et al. Patterns in microbial assemblages exported from the meltwater of Arctic and sub-Arctic glaciers. Front. Microbiol. 11, 523224 (2020).

    Article 

    Google Scholar
     

  • Erschbamer, B. Winners and losers of climate change in a central Alpine glacier foreland. Arct. Antarct. Alp. Res. 39, 237–244 (2007).

    Article 

    Google Scholar
     

  • Robison, A. L., Deluigi, N., Rolland, C., Manetti, N. & Battin, T. Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams. Biogeosciences 20, 2301–2316 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wojcik, R., Eichel, J., Bradley, J. A. & Benning, L. G. How allogenic factors affect succession in glacier forefields. Earth Sci. Rev. 218, 103642 (2021).

    Article 

    Google Scholar
     

  • Burga, C. A. et al. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora Morphol. Distrib. Funct. Ecol. Plants 205, 561–576 (2010).


    Google Scholar
     

  • Bråten, A. T. et al. Primary succession of surface active beetles and spiders in an alpine glacier foreland, central South Norway. Arct. Antarct. Alp. Res. 44, 2–15 (2012).

    Article 

    Google Scholar
     

  • Roland, T. P. et al. Sustained greening of the Antarctic peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Vinšová, P. et al. The biogeochemical legacy of Arctic subglacial sediments exposed by glacier retreat. Glob. Biogeochem. Cycles 36, e2021GB007126 (2022).

    Article 

    Google Scholar
     

  • Yde, J. C., Bárcena, T. G. & Finster, K. W. Subglacial and proglacial ecosystem responses to climate change. Clim. Change Geophys. Found. Ecol. Eff. 459–478 (2011).

  • Ragettli, S., Immerzeel, W. W. & Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes mountains. Proc. Natl Acad. Sci. USA 113, 9222–9227 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).

    Article 

    Google Scholar
     

  • Roncoroni, M., Brandani, J., Battin, T. I. & Lane, S. N. Ecosystem engineers: biofilms and the ontogeny of glacier floodplain ecosystems. Wiley Interdisc. Rev. Water 6, e1390 (2019).

    Article 

    Google Scholar
     

  • Milner, A. M., Fastie, C. L., Chapin, F. S., Engstrom, D. R. & Sharman, L. C. Interactions and linkages among ecosystems during landscape evolution. BioScience 57, 237–247 (2007).

    Article 

    Google Scholar
     

  • Brighenti, S. et al. Rock glaciers and related cold rocky landforms: overlooked climate refugia for mountain biodiversity. Glob. Change Biol. 27, 1504–1517 (2021).

    Article 

    Google Scholar
     

  • Gentili, R. et al. Glacier shrinkage and slope processes create habitat at high elevation and microrefugia across treeline for Alpine plants during warm stages. CATENA 193, 104626 (2020).

    Article 

    Google Scholar
     

  • Tampucci, D. et al. Debris-covered glaciers as habitat for plant and arthropod species: environmental framework and colonization patterns. Ecol. Complex. 32, 42–52 (2017).

    Article 

    Google Scholar
     

  • Bhatia, M. P. et al. Glaciers and nutrients in the canadian arctic archipelago marine system. Glob. Biogeochem. Cycles 35, e2021GB006976 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for Alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth. Res. 158, 151–169 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Brighenti, S. et al. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: a review. Sci. Total. Environ. 675, 542–559 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Holding, J. M. et al. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 62, 1307–1323 (2017).

    Article 

    Google Scholar
     

  • Hopwood, M. J. et al. Review article: how does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).

    Article 

    Google Scholar
     

  • Bokhorst, S., Convey, P. & Aerts, R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 29, 1721–1727.e3 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Braeckman, U. et al. Glacial melt impacts carbon flows in an Antarctic benthic food web. Front. Mar. Sci. 11, 1359597 (2024).

    Article 

    Google Scholar
     

  • Bringloe, T. T. et al. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change. Glob. Change Biol. 28, 3711–3727 (2022). This study predicts that northern expansion of Arctic marine forests will not compensate for contraction at the southern range edge, resulting in net habitat loss for endemic Arctic species.

    Article 
    CAS 

    Google Scholar
     

  • Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 8062 (2019).

    Article 

    Google Scholar
     

  • König, T., Kaufmann, R. & Scheu, S. The formation of terrestrial food webs in glacier foreland: evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54, 147–152 (2011).

    Article 

    Google Scholar
     

  • Hågvar, S. & Pedersen, A. Food choice of invertebrates during early glacier foreland succession. Arct. Antarct. Alp. Res. 47, 561–572 (2015).

    Article 

    Google Scholar
     

  • Rassner, S. M. E. et al. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ. Microbiol. 26, e16617 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Crosta, A. et al. Ecological interactions in glacier environments: a review of studies on a model Alpine glacier. Biol. Rev. 100, 227–244 (2025).

    Article 

    Google Scholar
     

  • Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat. Commun. 7, 11968 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Losapio, G., Jordán, F., Caccianiga, M. & Gobbi, M. Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland. Ecol. Model. 314, 73–79 (2015).

    Article 

    Google Scholar
     

  • Gobbi, M. et al. Vanishing permanent glaciers: climate change is threatening a European Union habitat (code 8340) and its poorly known biodiversity. Biodivers. Conserv. 30, 2267–2276 (2021).

    Article 

    Google Scholar
     

  • Varliero, G. et al. Glacial water: a dynamic microbial medium. Microorganisms 11, 1153 (2023).

    Article 

    Google Scholar
     

  • Zhong, Z.-P. et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9, 160 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fraser, C. I., Connell, L., Lee, C. K. & Cary, S. C. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol. 41, 417–421 (2018).

    Article 

    Google Scholar
     

  • Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).

    Article 

    Google Scholar
     

  • Christiansen, J. R., Röckmann, T., Popa, M. E., Sapart, C. J. & Jørgensen, C. J. Carbon emissions from the edge of the Greenland Ice Sheet reveal subglacial processes of methane and carbon dioxide turnover. J. Geophys. Res. Biogeosci. 126, e2021JG006308 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gutt, J. et al. Antarctic ecosystems in transition — life between stresses and opportunities. Biol. Rev. 96, 798–821 (2021).

    Article 

    Google Scholar
     

  • Eichel, J., Corenblit, D. & Dikau, R. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surf. Process. Landf. 41, 406–419 (2016).

    Article 

    Google Scholar
     

  • Palacios-Robles, E. et al. Declining glacier cover drives changes in aquatic macroinvertebrate biodiversity in the Cordillera Blanca, Perú. Glob. Change Biol. 30, e17355 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, J. The Ecology of Recently-Deglaciated Terrain: A Geoecological Approach to Glacier Forelands and Primary Succession (Cambridge Univ. Press, 1992).

  • Tu, B. N. et al. Glacier retreat triggers changes in biodiversity and plant–pollinator interaction diversity. Alp. Bot. 134, 171–182 (2024).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Successional theories. Biol. Rev. 98, 2049–2077 (2023).

    Article 

    Google Scholar
     

  • Anthelme, F., Carrasquer, I., Ceballos, J. L. & Peyre, G. Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains. Alp. Bot. 132, 211–222 (2022).

    Article 

    Google Scholar
     

  • Erschbamer, B., Niederfriniger Schlag, R., Carnicero, P. & Kaufmann, R. Long-term monitoring confirms limitations of recruitment and facilitation and reveals unexpected changes of the successional pathways in a glacier foreland of the Central Austrian Alps. Plant. Ecol. 224, 373–386 (2023). This study presents a long-term ecological experiment that indicates that facilitation and drought resistance are two key mechanisms driving plant population persistence and biodiversity change in proglacial habitats.

    Article 

    Google Scholar
     

  • Fraser, C. I., Kay, G. M., Plessis, Mdu & Ryan, P. G. Breaking down the barrier: dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).

    Article 

    Google Scholar
     

  • Moon, K. L., Chown, S. L. & Fraser, C. I. Reconsidering connectivity in the sub-Antarctic. Biol. Rev. 92, 2164–2181 (2017).

    Article 

    Google Scholar
     

  • Hotaling, S., Finn, D. S., Giersch, J. J., Weisrock, D. W. & Jacobsen, D. Climate change and Alpine stream biology: progress, challenges, and opportunities for the future. Biol. Rev. 92, 2024–2045 (2017).

    Article 

    Google Scholar
     

  • Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).

    Article 

    Google Scholar
     

  • Lagger, C. et al. Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses. Ecography 41, 579–591 (2018).

    Article 

    Google Scholar
     

  • Marsh, G., Chernikhova, D., Thiele, S. & Altshuler, I. Microbial dynamics in rapidly transforming Arctic proglacial landscapes. PLoS Clim. 3, e0000337 (2024).

    Article 

    Google Scholar
     

  • Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M. & Cerabolini, B. The functional basis of a primary succession resolved by CSR classification. Oikos 112, 10–20 (2006).

    Article 

    Google Scholar
     

  • Greinwald, K., Gebauer, T., Musso, A. & Scherer-Lorenzen, M. Similar successional development of functional community structure in glacier forelands despite contrasting bedrocks. J. Veg. Sci. 32, e12993 (2021).

    Article 

    Google Scholar
     

  • Chapin, F. S., Walker, L. R., Fastie, C. L. & Sharman, L. C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175 (1994).

    Article 

    Google Scholar
     

  • Gobbi, M. et al. Life in harsh environments: carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecol. Entomol. 42, 838–848 (2017).

    Article 

    Google Scholar
     

  • Erschbamer, B. & Mayer, R. Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the central Alps. Plant Ecol. Divers. 0874, (2015).

  • Haselberger, S., Junker, R. R., Ohler, L.-M., Otto, J.-C. & Kraushaar, S. Structural shifts in plant functional diversity during biogeomorphic succession: moving beyond taxonomic investigations in an Alpine glacier foreland. Earth Surf. Process. Landf. 49, 2458–2474 (2024).

    Article 

    Google Scholar
     

  • Fastie, C. L. Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76, 1899–1916 (1995).

    Article 

    Google Scholar
     

  • Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. 313, 18–36 (2021).

    Article 

    Google Scholar
     

  • Hotaling, S., Wimberger, P. H., Kelley, J. L. & Watts, H. E. Macroinvertebrates on glaciers: a key resource for terrestrial food webs? Ecology 101, e02947 (2020).

    Article 

    Google Scholar
     

  • Saboret, G. et al. Impact of glaciers on trophic dynamics and polyunsaturated fat accumulation in southern Greenland fjord ecosystems. Glob. Change Biol. 31, e70044 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Esperschütz, J. et al. Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosciences 8, 3283–3294 (2011).

    Article 

    Google Scholar
     

  • Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675 (2022).

    Article 

    Google Scholar
     

  • Pasotti, F. et al. Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLoS ONE 10, e0141742 (2015).

    Article 

    Google Scholar
     

  • de Vries, F. T. et al. Glacier forelands reveal fundamental plant and microbial controls on short-term ecosystem nitrogen retention. J. Ecol. 109, 3710–3723 (2021).

    Article 

    Google Scholar
     

  • Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pothula, S. K. & Adams, B. J. Community assembly in the wake of glacial retreat: a meta-analysis. Glob. Change Biol. 28, 6973–6991 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sint, D., Kaufmann, R., Mayer, R. & Traugott, M. Resolving the predator first paradox: arthropod predator food webs in pioneer sites of glacier forelands. Mol. Ecol. 28, 336–347 (2019).

    Article 

    Google Scholar
     

  • Conti, M. et al. Glacier retreat decreases mutualistic network robustness over spacetime. Ecography 2025, 1–11 (2025).

    Article 

    Google Scholar
     

  • Albrecht, M., Riesen, M. & Schmid, B. Plant–pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119, 1610–1624 (2010).

    Article 

    Google Scholar
     

  • Klopsch, C., Yde, J. C., Matthews, J. A., Vater, A. E. & Gillespie, M. A. Repeated survey along the foreland of a receding Norwegian glacier reveals shifts in succession of beetles and spiders. Holocene 33, 14–26 (2022).

    Article 

    Google Scholar
     

  • Song, M., Yu, L., Jiang, Y., Korpelainen, H. & Li, C. Increasing soil age drives shifts in plant–plant interactions from positive to negative and affects primary succession dynamics in a subalpine glacier forefield. Geoderma 353, 435–448 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zawierucha, K. Did bioaggregates on the glacier surface trigger life seeding and pedogenesis in terrestrial environments after the Neoproterozoic Snowball Earth? Soil. Biol. Biochem. 198, 1–8 (2024).

    Article 

    Google Scholar
     

  • Janko, K. et al. Islands of ice: glacier-dwelling metazoans form regionally distinct populations despite extensive periods of deglaciation. Divers. Distrib. 30, e13859 (2024).

    Article 

    Google Scholar
     

  • Hotaling, S. et al. Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms. Proc. Biol. Sci. 286, 20190983 (2019).


    Google Scholar
     

  • Zawierucha, K. et al. Cryophilic Tardigrada have disjunct and bipolar distribution and establish long-term stable, low-density demes. Polar Biol. 46, 1011–1027 (2023).

    Article 

    Google Scholar
     

  • Hoham, R. W. & Remias, D. Snow and glacial algae: a review. J. Phycol. 56, 264–282 (2020).

    Article 

    Google Scholar
     

  • Bringloe, T. T. et al. Whole genome population structure of North Atlantic kelp confirms high-latitude glacial refugia. Mol. Ecol. 31, 6473–6488 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Article 

    Google Scholar
     

  • Shain, D. H. et al. Ice-inhabiting species of Bdelloidea Rotifera reveal a pre-quaternary ancestry in the Arctic cryosphere. Biol. Lett. 20, 20230546 (2024).

    Article 

    Google Scholar
     

  • Shmakova, L. et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 31, R712–R713 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Girard, C., Vincent, W. F. & Culley, A. I. Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area. ISME Commun. 3, 105 (2023).

    Article 

    Google Scholar
     

  • Webster-Brown, J. G., Hawes, I., Jungblut, A. D., Wood, S. A. & Christenson, H. K. The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiol. Ecol. 91, fiv144 (2015).

    Article 

    Google Scholar
     

  • Shain, D. H., Mason, T. A., Farrell, A. H. & Michalewicz, L. A. Distribution and behavior of ice worms (Mesenchytraeus solifugus) in south-central Alaska. Can. J. Zool. 79, 1813–1821 (2011).

    Article 

    Google Scholar
     

  • Rosvold, J. Perennial ice and snow-covered land as important ecosystems for birds and mammals. J. Biogeogr. 43, 3–12 (2016).

    Article 

    Google Scholar
     

  • Gilg, O. et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. NY Acad. Sci. 1249, 166–190 (2012).

    Article 

    Google Scholar
     

  • Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining Arctic sea-ice. Biol. Lett. 11, 20150803 (2015).

    Article 

    Google Scholar
     

  • Mundy, C. J. & Meiners, K. M. Ecology of Arctic Sea Ice (ed. Thomas, D. N.) 261–288 (Wiley, 2020).

  • Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).

    Article 

    Google Scholar
     

  • Middelbo, A. B., Sejr, M. K., Arendt, K. E. & Møller, E. F. Impact of glacial meltwater on spatiotemporal distribution of copepods and their grazing impact in Young Sound NE, Greenland. Limnol. Oceanogr. 63, 322–336 (2018).

    Article 

    Google Scholar
     

  • González-Bergonzoni, I. et al. Small birds, big effects: the little auk (Alle alle) transforms High Arctic ecosystems. Proc. Biol. Sci. 284, 20162572 (2017).


    Google Scholar
     

  • Brahney, J. et al. Glacier recession alters stream water quality characteristics facilitating bloom formation in the benthic diatom Didymosphenia geminata. Sci. Total. Environ. 764, 142856 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bluhm, B. A., Swadling, K. M. & Gradinger, R. in Sea Ice 3rd edn (ed. Thomas, D. N.) Ch. 16 (Wiley, 2016).

  • Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in Alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).

    Article 

    Google Scholar
     

  • Cadbury, S. L., Milner, A. M. & Hannah, D. M. Hydroecology of a New Zealand glacier-fed river: linking longitudinal zonation of physical habitat and macroinvertebrate communities. Ecohydrology 4, 520–531 (2011).

    Article 

    Google Scholar
     

  • Giersch, J. J., Hotaling, S., Kovach, R. P., Jones, L. A. & Muhlfeld, C. C. Climate-induced glacier and snow loss imperils alpine stream insects. Glob. Change Biol. 23, 2577–2589 (2017).

    Article 

    Google Scholar
     

  • Almela, P., Casero, C., Justel, A. & Quesada, A. Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. FEMS Microbiol. Ecol. 98, fiac029 (2022).

    Article 

    Google Scholar
     

  • Hu, Y. et al. Diversity and co-occurrence networks of bacterial and fungal communities on two typical debris-covered glaciers, southeastern Tibetan Plateau. Microbiol. Res. 273, 127409 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Arraiano-Castilho, R. et al. Plant–fungal interactions in hybrid zones: ectomycorrhizal communities of willows (Salix) in an Alpine glacier forefield. Fungal Ecol. 45, 100936 (2020).

    Article 

    Google Scholar
     

  • Fischer, A., Fickert, T., Schwaizer, G., Patzelt, G. & Groß, G. Vegetation dynamics in Alpine glacier forelands tackled from space. Sci. Rep. 9, 13918 (2019).

    Article 

    Google Scholar
     

  • Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e2 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fickert, T. Common patterns and diverging trajectories in primary succession of plants in eastern Alpine glacier forelands. Diversity 12, 191 (2020).

    Article 

    Google Scholar
     

  • Zimmer, A., Beach, T., Klein, J. A. & Recharte Bullard, J. The need for stewardship of lands exposed by deglaciation from climate change. WIREs Clim. Change 13, e753 (2022).

    Article 

    Google Scholar
     

  • Vater, A. E. & Matthews, J. A. Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25, 108–129 (2015).

    Article 

    Google Scholar
     

  • Matthews, J. & Vater, A. Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. CATENA 135, 219–230 (2015).

    Article 

    Google Scholar
     

  • Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322–3326 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).

    Article 

    Google Scholar
     

  • Gunnarsson, A., Gardarsson, S. M., Pálsson, F., Jóhannesson, T. & Sveinsson, Ó. G. B. Annual and inter-annual variability and trends of albedo of Icelandic glaciers. Cryosphere 15, 547–570 (2021).

    Article 

    Google Scholar
     

  • Sakata Bekku, Y., Nakatsubo, T., Kume, A. & Koizumi, H. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard. Arct. Antarct. Alp. Res. 36, 395–399 (2004).

    Article 

    Google Scholar
     

  • Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).

    Article 

    Google Scholar
     

  • Hågvar, S. & Ohlson, M. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Sci. Rep. 3, 2820 (2013).

    Article 

    Google Scholar
     

  • Sommaruga, R. When glaciers and ice sheets melt: consequences for planktonic organisms. J. Plankton Res. 37, 509–518 (2015).

    Article 

    Google Scholar
     

  • Tiberti, R. et al. Food web complexity of high mountain lakes is largely affected by glacial retreat. Ecosystems 23, 1093–1106 (2020).

    Article 

    Google Scholar
     

  • Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).

    Article 

    Google Scholar
     

  • Ruben, M. et al. Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms. Nat. Geosci. 16, 625–630 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Losapio, G., Genes, L., Knight, C. J., McFadden, T. N. & Pavan, L. Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. Funct. Ecol. 38, 8–21 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nowak, A. et al. Antarctic Blue Ice Areas are hydrologically active, nutrient rich and contain microbially diverse cryoconite holes. Commun. Earth Environ. 5, 1–13 (2024).

    Article 

    Google Scholar
     

  • Roncoroni, M. et al. Ecosystem engineering by periphyton in Alpine proglacial streams. Earth Surf. Process. Landf. 49, 417–431 (2024).

    Article 

    Google Scholar
     

  • Jaroměřská, T. N. et al. Spatial distribution and stable isotopic composition of invertebrates uncover differences between habitats on the glacier surface in the Alps. Limnology 24, 83–93 (2023).

    Article 

    Google Scholar
     

  • Rozwalak, P. et al. Cryoconite — from minerals and organic matter to bioengineered sediments on glacier’s surfaces. Sci. Total. Environ. 807, 150874 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bellmore, J. R., Fellman, J. B., Hood, E., Dunkle, M. R. & Edwards, R. T. A melting cryosphere constrains fish growth by synchronizing the seasonal phenology of river food webs. Glob. Change Biol. 28, 4807–4818 (2022).

    Article 

    Google Scholar
     

  • Wietrzyk-Pełka, P., Rola, K., Szymański, W. & Węgrzyn, M. H. Organic carbon accumulation in the glacier forelands with regard to variability of environmental conditions in different ecogenesis stages of High Arctic ecosystems. Sci. Total. Environ. 717, 135151 (2020).

    Article 

    Google Scholar
     

  • Åkesson, A. et al. The importance of species interactions in eco-evolutionary community dynamics under climate change. Nat. Commun. 12, 4759 (2021).

    Article 

    Google Scholar
     

  • Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Article 

    Google Scholar
     

  • Boetius, A. et al. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Attenborough’s echidna rediscovered by combining Indigenous knowledge with camera-trapping

    Attenborough’s long-beaked echidna still survives in the Cyclops MountainsWe didn’t capture any photographic evidence of Z. attenboroughi during the 2022 survey; from the...
    Biodiversity
    4
    minutes

    Impact of transfer learning methods and dataset characteristics on generalization in...

    The data processing, methodology, and evaluation workflow for this study are outlined in Fig. 1.(Left) Distribution of the number of recordings per species in...
    Biodiversity
    18
    minutes

    Global intraspecific diversity of marine forests of brown macroalgae predicted by...

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. https://doi.org/10.1038/nrg.2016.58 (2016).Maggs, C. A. et al. Evaluating signatures of...
    Biodiversity
    9
    minutes

    Insect trafficking poses a risk to wildlife and human health

    Four men were recently arrested and fined for attempting to smuggle more than 5,000 ants out of Kenya. Aiming...
    Biodiversity
    3
    minutes
    spot_imgspot_img