Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES https://www.ipbes.net/global-assessment (2019).
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
Roe, G. H., Christian, J. E. & Marzeion, B. On the attribution of industrial-era glacier mass loss to anthropogenic climate change. Cryosphere 15, 1889–1905 (2021).
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).
Cook, S. J. et al. Committed ice loss in the European Alps until 2050 using a deep-learning-aided 3D ice-flow model with data assimilation. Geophys. Res. Lett. 50, e2023GL105029 (2023).
Huss, M. et al. Toward mountains without permanent snow and ice. Earth Future 5, 418–435 (2017).
Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).
Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).
Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017). This paper presents a synthesis of how glacier loss alters hydrological conditions and biogeochemical fluxes and in turn affects biodiversity and ecosystem services.
Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).
Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018). Functional trait analyses that reveal the mechanisms underlying invertebrate diversity responses to reduced glacier cover.
Wilkes, M. A. et al. Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. Nat. Ecol. Evol. 7, 841–851 (2023). This study presents species distribution models that indicate upstream shifts, extinctions or potential refugia for river invertebrates after glacier retreat.
Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).
Eichel, J. in Geomorphology of Proglacial Systems (eds Heckmann, T. & Morche, D.) 327–349 (Springer, 2019).
Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).
Erschbamer, B. & Caccianiga, M. S. in Progress in Botany Vol. 78 (eds Cánovas, F. M., Lüttge, U. & Matyssek, R.) 259–284 (Springer, 2016).
Ficetola, G. F. et al. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 52, 405–426 (2021).
Ficetola, G. F. et al. The development of terrestrial ecosystems emerging after glacier retreat. Nature 632, 336–342 (2024). Environmental DNA metabarcoding reveals patterns of increasing richness for bacteria, fungi, plants and animals for a few hundred years after glacier retreat.
Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 4, 686–687 (2020).
Losapio, G. et al. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 8, 520 (2021).
Cantera, I. et al. The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat. Nat. Plants 10, 256–267 (2024).
Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565 (2017). This study demonstrates the role of glacier algae in supporting microbial diversity and influencing productivity and surface albedo.
Khelidj, N., Caccianiga, M., Cerabolini, B. E. L., Tampucci, D. & Losapio, G. Glacier extinction homogenizes functional diversity via ecological succession. J. Veg. Sci. 35, e13312 (2024).
Bosson, J. B. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023). A study that provides projections of glacier loss and associated emergence of aquatic and terrestrial habitats across poorly protected glaciers.
Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745–762 (2015).
Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).
Thompson, L. G. et al. The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records. Glob. Planet. Change 203, 103538 (2021).
Huss, M. & Fischer, M. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci. 4, 34 (2016).
Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).
Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).
Hop, H. et al. Tidewater glaciers as “climate refugia” for zooplankton-dependent food web in Kongsfjorden, Svalbard. Front. Mar. Sci. 10, 1161912 (2023). This study provides evidence of glacial plumes as ‘climate refugia’ for seabirds foraging on zooplankton.
Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).
Clitherow, L. R., Carrivick, J. L. & Brown, L. E. Food web structure in a harsh glacier-fed river. PLoS ONE 8, e60899 (2013).
Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).
Ezzat, L. et al. Diversity and biogeography of the bacterial microbiome in glacier-fed streams. Nature 637, 622–630 (2025). This study finds that the microbiome of glacier-fed stream differs from that of the cryosphere by hosting bacterial variants endemic to a mountain range.
Levy, A., Robinson, Z., Krause, S., Waller, R. & Weatherill, J. Long-term variability of proglacial groundwater-fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland. Earth Surf. Process. Landf. 40, 981–994 (2015).
He, Q. et al. Glacier retreat and its impact on groundwater system evolution in the Yarlung Zangbo source region, Tibetan Plateau. J. Hydrol. Reg. Stud. 47, 101368 (2023).
Menzies, J. in The SAGE Handbook of Geomorphology (eds Gregory, K. J. & Goudie, A. S.) 378–392 (Sage, 2011).
Eichel, J., Draebing, D., Winkler, S. & Meyer, N. Similar vegetation-geomorphic disturbance feedbacks shape unstable glacier forelands across mountain regions. Ecosphere 14, e4404 (2023).
Benn, D. & Evans, D. Glaciers and Glaciation (Routledge, 2014).
Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3, 10 (2017).
Kohler, T. J. et al. Patterns in microbial assemblages exported from the meltwater of Arctic and sub-Arctic glaciers. Front. Microbiol. 11, 523224 (2020).
Erschbamer, B. Winners and losers of climate change in a central Alpine glacier foreland. Arct. Antarct. Alp. Res. 39, 237–244 (2007).
Robison, A. L., Deluigi, N., Rolland, C., Manetti, N. & Battin, T. Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams. Biogeosciences 20, 2301–2316 (2023).
Wojcik, R., Eichel, J., Bradley, J. A. & Benning, L. G. How allogenic factors affect succession in glacier forefields. Earth Sci. Rev. 218, 103642 (2021).
Burga, C. A. et al. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora Morphol. Distrib. Funct. Ecol. Plants 205, 561–576 (2010).
Bråten, A. T. et al. Primary succession of surface active beetles and spiders in an alpine glacier foreland, central South Norway. Arct. Antarct. Alp. Res. 44, 2–15 (2012).
Roland, T. P. et al. Sustained greening of the Antarctic peninsula observed from satellites. Nat. Geosci. 17, 1121–1126 (2024).
Vinšová, P. et al. The biogeochemical legacy of Arctic subglacial sediments exposed by glacier retreat. Glob. Biogeochem. Cycles 36, e2021GB007126 (2022).
Yde, J. C., Bárcena, T. G. & Finster, K. W. Subglacial and proglacial ecosystem responses to climate change. Clim. Change Geophys. Found. Ecol. Eff. 459–478 (2011).
Ragettli, S., Immerzeel, W. W. & Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes mountains. Proc. Natl Acad. Sci. USA 113, 9222–9227 (2016).
Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).
Roncoroni, M., Brandani, J., Battin, T. I. & Lane, S. N. Ecosystem engineers: biofilms and the ontogeny of glacier floodplain ecosystems. Wiley Interdisc. Rev. Water 6, e1390 (2019).
Milner, A. M., Fastie, C. L., Chapin, F. S., Engstrom, D. R. & Sharman, L. C. Interactions and linkages among ecosystems during landscape evolution. BioScience 57, 237–247 (2007).
Brighenti, S. et al. Rock glaciers and related cold rocky landforms: overlooked climate refugia for mountain biodiversity. Glob. Change Biol. 27, 1504–1517 (2021).
Gentili, R. et al. Glacier shrinkage and slope processes create habitat at high elevation and microrefugia across treeline for Alpine plants during warm stages. CATENA 193, 104626 (2020).
Tampucci, D. et al. Debris-covered glaciers as habitat for plant and arthropod species: environmental framework and colonization patterns. Ecol. Complex. 32, 42–52 (2017).
Bhatia, M. P. et al. Glaciers and nutrients in the canadian arctic archipelago marine system. Glob. Biogeochem. Cycles 35, e2021GB006976 (2021).
Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for Alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).
Bourquin, M. et al. The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087 (2022).
Yin, H. et al. Basking in the sun: how mosses photosynthesise and survive in Antarctica. Photosynth. Res. 158, 151–169 (2023).
Brighenti, S. et al. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: a review. Sci. Total. Environ. 675, 542–559 (2019).
Holding, J. M. et al. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 62, 1307–1323 (2017).
Hopwood, M. J. et al. Review article: how does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).
Bokhorst, S., Convey, P. & Aerts, R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 29, 1721–1727.e3 (2019).
Braeckman, U. et al. Glacial melt impacts carbon flows in an Antarctic benthic food web. Front. Mar. Sci. 11, 1359597 (2024).
Bringloe, T. T. et al. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change. Glob. Change Biol. 28, 3711–3727 (2022). This study predicts that northern expansion of Arctic marine forests will not compensate for contraction at the southern range edge, resulting in net habitat loss for endemic Arctic species.
Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 8062 (2019).
König, T., Kaufmann, R. & Scheu, S. The formation of terrestrial food webs in glacier foreland: evidence for the pivotal role of decomposer prey and intraguild predation. Pedobiologia 54, 147–152 (2011).
Hågvar, S. & Pedersen, A. Food choice of invertebrates during early glacier foreland succession. Arct. Antarct. Alp. Res. 47, 561–572 (2015).
Rassner, S. M. E. et al. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ. Microbiol. 26, e16617 (2024).
Crosta, A. et al. Ecological interactions in glacier environments: a review of studies on a model Alpine glacier. Biol. Rev. 100, 227–244 (2025).
Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat. Commun. 7, 11968 (2016).
Losapio, G., Jordán, F., Caccianiga, M. & Gobbi, M. Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland. Ecol. Model. 314, 73–79 (2015).
Gobbi, M. et al. Vanishing permanent glaciers: climate change is threatening a European Union habitat (code 8340) and its poorly known biodiversity. Biodivers. Conserv. 30, 2267–2276 (2021).
Varliero, G. et al. Glacial water: a dynamic microbial medium. Microorganisms 11, 1153 (2023).
Zhong, Z.-P. et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 9, 160 (2021).
Fraser, C. I., Connell, L., Lee, C. K. & Cary, S. C. Evidence of plant and animal communities at exposed and subglacial (cave) geothermal sites in Antarctica. Polar Biol. 41, 417–421 (2018).
Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).
Christiansen, J. R., Röckmann, T., Popa, M. E., Sapart, C. J. & Jørgensen, C. J. Carbon emissions from the edge of the Greenland Ice Sheet reveal subglacial processes of methane and carbon dioxide turnover. J. Geophys. Res. Biogeosci. 126, e2021JG006308 (2021).
Gutt, J. et al. Antarctic ecosystems in transition — life between stresses and opportunities. Biol. Rev. 96, 798–821 (2021).
Eichel, J., Corenblit, D. & Dikau, R. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surf. Process. Landf. 41, 406–419 (2016).
Palacios-Robles, E. et al. Declining glacier cover drives changes in aquatic macroinvertebrate biodiversity in the Cordillera Blanca, Perú. Glob. Change Biol. 30, e17355 (2024).
Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).
Matthews, J. The Ecology of Recently-Deglaciated Terrain: A Geoecological Approach to Glacier Forelands and Primary Succession (Cambridge Univ. Press, 1992).
Tu, B. N. et al. Glacier retreat triggers changes in biodiversity and plant–pollinator interaction diversity. Alp. Bot. 134, 171–182 (2024).
Poorter, L. et al. Successional theories. Biol. Rev. 98, 2049–2077 (2023).
Anthelme, F., Carrasquer, I., Ceballos, J. L. & Peyre, G. Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains. Alp. Bot. 132, 211–222 (2022).
Erschbamer, B., Niederfriniger Schlag, R., Carnicero, P. & Kaufmann, R. Long-term monitoring confirms limitations of recruitment and facilitation and reveals unexpected changes of the successional pathways in a glacier foreland of the Central Austrian Alps. Plant. Ecol. 224, 373–386 (2023). This study presents a long-term ecological experiment that indicates that facilitation and drought resistance are two key mechanisms driving plant population persistence and biodiversity change in proglacial habitats.
Fraser, C. I., Kay, G. M., Plessis, Mdu & Ryan, P. G. Breaking down the barrier: dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).
Moon, K. L., Chown, S. L. & Fraser, C. I. Reconsidering connectivity in the sub-Antarctic. Biol. Rev. 92, 2164–2181 (2017).
Hotaling, S., Finn, D. S., Giersch, J. J., Weisrock, D. W. & Jacobsen, D. Climate change and Alpine stream biology: progress, challenges, and opportunities for the future. Biol. Rev. 92, 2024–2045 (2017).
Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).
Lagger, C. et al. Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses. Ecography 41, 579–591 (2018).
Marsh, G., Chernikhova, D., Thiele, S. & Altshuler, I. Microbial dynamics in rapidly transforming Arctic proglacial landscapes. PLoS Clim. 3, e0000337 (2024).
Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M. & Cerabolini, B. The functional basis of a primary succession resolved by CSR classification. Oikos 112, 10–20 (2006).
Greinwald, K., Gebauer, T., Musso, A. & Scherer-Lorenzen, M. Similar successional development of functional community structure in glacier forelands despite contrasting bedrocks. J. Veg. Sci. 32, e12993 (2021).
Chapin, F. S., Walker, L. R., Fastie, C. L. & Sharman, L. C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175 (1994).
Gobbi, M. et al. Life in harsh environments: carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecol. Entomol. 42, 838–848 (2017).
Erschbamer, B. & Mayer, R. Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the central Alps. Plant Ecol. Divers. 0874, (2015).
Haselberger, S., Junker, R. R., Ohler, L.-M., Otto, J.-C. & Kraushaar, S. Structural shifts in plant functional diversity during biogeomorphic succession: moving beyond taxonomic investigations in an Alpine glacier foreland. Earth Surf. Process. Landf. 49, 2458–2474 (2024).
Fastie, C. L. Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76, 1899–1916 (1995).
Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. 313, 18–36 (2021).
Hotaling, S., Wimberger, P. H., Kelley, J. L. & Watts, H. E. Macroinvertebrates on glaciers: a key resource for terrestrial food webs? Ecology 101, e02947 (2020).
Saboret, G. et al. Impact of glaciers on trophic dynamics and polyunsaturated fat accumulation in southern Greenland fjord ecosystems. Glob. Change Biol. 31, e70044 (2025).
Esperschütz, J. et al. Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosciences 8, 3283–3294 (2011).
Fodelianakis, S. et al. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME J. 16, 666–675 (2022).
Pasotti, F. et al. Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLoS ONE 10, e0141742 (2015).
de Vries, F. T. et al. Glacier forelands reveal fundamental plant and microbial controls on short-term ecosystem nitrogen retention. J. Ecol. 109, 3710–3723 (2021).
Lee, J. R. et al. Threat management priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).
Pothula, S. K. & Adams, B. J. Community assembly in the wake of glacial retreat: a meta-analysis. Glob. Change Biol. 28, 6973–6991 (2022).
Sint, D., Kaufmann, R., Mayer, R. & Traugott, M. Resolving the predator first paradox: arthropod predator food webs in pioneer sites of glacier forelands. Mol. Ecol. 28, 336–347 (2019).
Conti, M. et al. Glacier retreat decreases mutualistic network robustness over spacetime. Ecography 2025, 1–11 (2025).
Albrecht, M., Riesen, M. & Schmid, B. Plant–pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119, 1610–1624 (2010).
Klopsch, C., Yde, J. C., Matthews, J. A., Vater, A. E. & Gillespie, M. A. Repeated survey along the foreland of a receding Norwegian glacier reveals shifts in succession of beetles and spiders. Holocene 33, 14–26 (2022).
Song, M., Yu, L., Jiang, Y., Korpelainen, H. & Li, C. Increasing soil age drives shifts in plant–plant interactions from positive to negative and affects primary succession dynamics in a subalpine glacier forefield. Geoderma 353, 435–448 (2019).
Zawierucha, K. Did bioaggregates on the glacier surface trigger life seeding and pedogenesis in terrestrial environments after the Neoproterozoic Snowball Earth? Soil. Biol. Biochem. 198, 1–8 (2024).
Janko, K. et al. Islands of ice: glacier-dwelling metazoans form regionally distinct populations despite extensive periods of deglaciation. Divers. Distrib. 30, e13859 (2024).
Hotaling, S. et al. Long-distance dispersal, ice sheet dynamics and mountaintop isolation underlie the genetic structure of glacier ice worms. Proc. Biol. Sci. 286, 20190983 (2019).
Zawierucha, K. et al. Cryophilic Tardigrada have disjunct and bipolar distribution and establish long-term stable, low-density demes. Polar Biol. 46, 1011–1027 (2023).
Hoham, R. W. & Remias, D. Snow and glacial algae: a review. J. Phycol. 56, 264–282 (2020).
Bringloe, T. T. et al. Whole genome population structure of North Atlantic kelp confirms high-latitude glacial refugia. Mol. Ecol. 31, 6473–6488 (2022).
Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).
Shain, D. H. et al. Ice-inhabiting species of Bdelloidea Rotifera reveal a pre-quaternary ancestry in the Arctic cryosphere. Biol. Lett. 20, 20230546 (2024).
Shmakova, L. et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 31, R712–R713 (2021).
Girard, C., Vincent, W. F. & Culley, A. I. Arctic bacterial diversity and connectivity in the coastal margin of the Last Ice Area. ISME Commun. 3, 105 (2023).
Webster-Brown, J. G., Hawes, I., Jungblut, A. D., Wood, S. A. & Christenson, H. K. The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiol. Ecol. 91, fiv144 (2015).
Shain, D. H., Mason, T. A., Farrell, A. H. & Michalewicz, L. A. Distribution and behavior of ice worms (Mesenchytraeus solifugus) in south-central Alaska. Can. J. Zool. 79, 1813–1821 (2011).
Rosvold, J. Perennial ice and snow-covered land as important ecosystems for birds and mammals. J. Biogeogr. 43, 3–12 (2016).
Gilg, O. et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. NY Acad. Sci. 1249, 166–190 (2012).
Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining Arctic sea-ice. Biol. Lett. 11, 20150803 (2015).
Mundy, C. J. & Meiners, K. M. Ecology of Arctic Sea Ice (ed. Thomas, D. N.) 261–288 (Wiley, 2020).
Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).
Middelbo, A. B., Sejr, M. K., Arendt, K. E. & Møller, E. F. Impact of glacial meltwater on spatiotemporal distribution of copepods and their grazing impact in Young Sound NE, Greenland. Limnol. Oceanogr. 63, 322–336 (2018).
González-Bergonzoni, I. et al. Small birds, big effects: the little auk (Alle alle) transforms High Arctic ecosystems. Proc. Biol. Sci. 284, 20162572 (2017).
Brahney, J. et al. Glacier recession alters stream water quality characteristics facilitating bloom formation in the benthic diatom Didymosphenia geminata. Sci. Total. Environ. 764, 142856 (2021).
Bluhm, B. A., Swadling, K. M. & Gradinger, R. in Sea Ice 3rd edn (ed. Thomas, D. N.) Ch. 16 (Wiley, 2016).
Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in Alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).
Cadbury, S. L., Milner, A. M. & Hannah, D. M. Hydroecology of a New Zealand glacier-fed river: linking longitudinal zonation of physical habitat and macroinvertebrate communities. Ecohydrology 4, 520–531 (2011).
Giersch, J. J., Hotaling, S., Kovach, R. P., Jones, L. A. & Muhlfeld, C. C. Climate-induced glacier and snow loss imperils alpine stream insects. Glob. Change Biol. 23, 2577–2589 (2017).
Almela, P., Casero, C., Justel, A. & Quesada, A. Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. FEMS Microbiol. Ecol. 98, fiac029 (2022).
Hu, Y. et al. Diversity and co-occurrence networks of bacterial and fungal communities on two typical debris-covered glaciers, southeastern Tibetan Plateau. Microbiol. Res. 273, 127409 (2023).
Arraiano-Castilho, R. et al. Plant–fungal interactions in hybrid zones: ectomycorrhizal communities of willows (Salix) in an Alpine glacier forefield. Fungal Ecol. 45, 100936 (2020).
Fischer, A., Fickert, T., Schwaizer, G., Patzelt, G. & Groß, G. Vegetation dynamics in Alpine glacier forelands tackled from space. Sci. Rep. 9, 13918 (2019).
Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e2 (2022).
Fickert, T. Common patterns and diverging trajectories in primary succession of plants in eastern Alpine glacier forelands. Diversity 12, 191 (2020).
Zimmer, A., Beach, T., Klein, J. A. & Recharte Bullard, J. The need for stewardship of lands exposed by deglaciation from climate change. WIREs Clim. Change 13, e753 (2022).
Vater, A. E. & Matthews, J. A. Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25, 108–129 (2015).
Matthews, J. & Vater, A. Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. CATENA 135, 219–230 (2015).
Lee, J. R. et al. Islands in the ice: potential impacts of habitat transformation on Antarctic biodiversity. Glob. Change Biol. 28, 5865–5880 (2022).
Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322–3326 (2014).
Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2019).
Gunnarsson, A., Gardarsson, S. M., Pálsson, F., Jóhannesson, T. & Sveinsson, Ó. G. B. Annual and inter-annual variability and trends of albedo of Icelandic glaciers. Cryosphere 15, 547–570 (2021).
Sakata Bekku, Y., Nakatsubo, T., Kume, A. & Koizumi, H. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Ålesund, Svalbard. Arct. Antarct. Alp. Res. 36, 395–399 (2004).
Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).
Hågvar, S. & Ohlson, M. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates. Sci. Rep. 3, 2820 (2013).
Sommaruga, R. When glaciers and ice sheets melt: consequences for planktonic organisms. J. Plankton Res. 37, 509–518 (2015).
Tiberti, R. et al. Food web complexity of high mountain lakes is largely affected by glacial retreat. Ecosystems 23, 1093–1106 (2020).
Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).
Ruben, M. et al. Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms. Nat. Geosci. 16, 625–630 (2023).
Losapio, G., Genes, L., Knight, C. J., McFadden, T. N. & Pavan, L. Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. Funct. Ecol. 38, 8–21 (2024).
Nowak, A. et al. Antarctic Blue Ice Areas are hydrologically active, nutrient rich and contain microbially diverse cryoconite holes. Commun. Earth Environ. 5, 1–13 (2024).
Roncoroni, M. et al. Ecosystem engineering by periphyton in Alpine proglacial streams. Earth Surf. Process. Landf. 49, 417–431 (2024).
Jaroměřská, T. N. et al. Spatial distribution and stable isotopic composition of invertebrates uncover differences between habitats on the glacier surface in the Alps. Limnology 24, 83–93 (2023).
Rozwalak, P. et al. Cryoconite — from minerals and organic matter to bioengineered sediments on glacier’s surfaces. Sci. Total. Environ. 807, 150874 (2022).
Bellmore, J. R., Fellman, J. B., Hood, E., Dunkle, M. R. & Edwards, R. T. A melting cryosphere constrains fish growth by synchronizing the seasonal phenology of river food webs. Glob. Change Biol. 28, 4807–4818 (2022).
Wietrzyk-Pełka, P., Rola, K., Szymański, W. & Węgrzyn, M. H. Organic carbon accumulation in the glacier forelands with regard to variability of environmental conditions in different ecogenesis stages of High Arctic ecosystems. Sci. Total. Environ. 717, 135151 (2020).
Åkesson, A. et al. The importance of species interactions in eco-evolutionary community dynamics under climate change. Nat. Commun. 12, 4759 (2021).
Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).
Boetius, A. et al. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).