Ivermectin causes adverse effects on the metabolic rate and thermoregulatory capacity of Dung beetles


  • Campbell, W. C. Ivermectin and Abamectin (Springer, 1989). https://doi.org/10.1007/978-1-4612-3626-9

  • Lanusse, C. et al. Comparative plasma disposition kinetics of Ivermectin, moxidectin and doramectin in cattle. J. Vet. Pharmacol. Ther. 20, 91–99. https://doi.org/10.1046/j.1365-2885.1997.00825.x (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Prichard, R., Ménez, C. & Lespine, A. Moxidectin and the avermectins: consanguinity but not identity. Int. J. Parasitol. Drugs Drugs Resist. 2, 134–153. https://doi.org/10.1016/j.ijpddr.2012.04.001 (2012).

    Article 

    Google Scholar
     

  • Lumaret, J. P., Errouissi, F., Floate, K. D., Römbke, J. & Wardhaugh, K. G. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr. Pharm. Biotechnol. 13:1004–1060. https://doi.org/10.2174/138920112800399257(2012).

  • Verdú, J. R. et al. Low doses of Ivermectin cause sensory and locomotor disorders in Dung beetles. Sci. Rep. 5, 1–10. https://doi.org/10.1038/srep13912 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Ambrožová, L. et al. Lasting decrease in functionality and richness: effects of Ivermectin use on Dung beetle communities. Agric. Ecosyst. Environ. 321, 107634. https://doi.org/10.1016/j.agee.2021.107634 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Strong, L. & Overview The impact of avermectins on pastureland ecology. Vet. Parasitol. 48, 3–17. https://doi.org/10.1016/0304-4017(93)90140-I (1993).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Weaving, H., Sands, B. & Wall, R. Reproductive sublethal effects of macrocyclic lactones and synthetic pyrethroids on the Dung beetle Onthophagus similis. Bull. Entomol. Res. 110, 195–200. https://doi.org/10.1017/S0007485319000567 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Martínez-Morales, I., Lumaret, J. P., Ortiz, R. Z. & Kadiri, N. The effects of sublethal and lethal doses of Ivermectin on the reproductive physiology and larval development of the Dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). Can. Entomol. 149, 1–12. https://doi.org/10.4039/tce.2017.11 (2017).

    Article 

    Google Scholar
     

  • Pérez-Cogollo, L. C., Rodríguez-Vivas, R. I., Reyes-Novelo, E. & Delfín-González, H. Muñoz-Rodríguez, D. Survival and reproduction of Onthophagus landolti (Coleoptera: Scarabaeidae) exposed to Ivermectin residues in cattle Dung. Bull. Entomol. Res. 107, 118–125. https://doi.org/10.1017/S0007485316000705 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wardhaugh, K. G. & Rodriguez-Menendez, H. The effects of the antiparasitic drug, Ivermectin, on the development and survival of the Dung‐breeding fly, Orthelia cornicina (F.) and the scarabaeine Dung beetles, Copris hispanus L., Bubas bubalus (Oliver) and Onitis belial F. J. Appl. Entomol. 106, 381–389. https://doi.org/10.1111/j.1439-0418.1988.tb00607.x (1988).

    Article 

    Google Scholar
     

  • Krüger, K. & Scholtz, C. H. Lethal and sublethal effects of Ivermectin on the dung-breeding beetles Euoniticellus intermedius (Reiche) and Onitis alexis Klug (Coleoptera, Scarabaeidae). Agric. Ecosyst. Environ. 61, 123–131. https://doi.org/10.1016/S0167-8809(96)01108-5 (1997).

    Article 

    Google Scholar
     

  • González-Tokman, D. et al. Ivermectin alters reproductive success, body condition and sexual trait expression in Dung beetles. Chemosphere 178, 129–135. https://doi.org/10.1016/j.chemosphere.2017.03.013 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rodríguez-Vivas, R. I. et al. Evaluation of the attraction, lethal and sublethal effects of the faeces of ivermectin-treated cattle on the Dung beetle Digitonthophagus gazella (Coleoptera: Scarabaeidae). Aust. Entomol. 59, 368–374. https://doi.org/10.1111/aen.12450 (2020).

    Article 

    Google Scholar
     

  • Verdú, J. R. et al. First assessment of the comparative toxicity of Ivermectin and moxidectin in adult Dung beetles: Sub-lethal symptoms and pre-lethal consequences. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-33241-0 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Verdú, J. R. et al. Biomagnification and body distribution of Ivermectin in Dung beetles. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-66063-0 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • González-Tokman, D. et al. Effect of chemical pollution and parasitism on heat tolerance in Dung beetles (Coleoptera: Scarabaeinae). J. Econ. Entomol. 114, 462–467. https://doi.org/10.1093/jee/toaa216 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Villada-Bedoya, S. et al. Heat shock proteins and antioxidants as mechanisms of response to Ivermectin in the Dung beetle Euoniticellus intermedius. Chemosphere 269, 128707. https://doi.org/10.1016/j.chemosphere.2020.128707 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Verdú, J. R. & Lobo, J. M. Ecophysiology of thermoregulation in endothermic dung beetles: Ecological and geographical implications. Research Signpost 37/661 (2). In: Insect Ecology and Conservation, : ISBN: 978-81-308-0297-8 (2008).

  • Heinrich, B. & Bartholomew, G. A. Roles of endothermy and size in inter- and intraspecific competition for elephant Dung in an African Dung beetle, Scarabaeus laevistriatus. Physiol. Zool. 52, 484–496. https://doi.org/10.1086/physzool.52.4.30155939 (1979).

    Article 

    Google Scholar
     

  • Scholtz, C. H., Davis, A. L. V. & Kryger, U. Evolutionary Biology and Conservation of Dung Beetles 1st edn (Pensoft, 2009).

  • Simmons, L. W. et al. Ecology and Evolution of Dung Beetles 1st edn (Blackwell Publishing Ltd., 2011).

  • Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS ONE. 7, e33914. https://doi.org/10.1371/journal.pone.0033914 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verdú, J. R., Cortez, V., Oliva, D. & Giménez-Gómez, V. C. Thermoregulatory syndromes of two sympatric Dung beetles with low energy costs. J. Insect Physiol. 118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdú, J. R., Oliva, D., Giménez-Gómez, V. C. & Cortez, V. Differential ecophysiological syndromes explain the partition of the thermal niche resource in coexisting eucraniini Dung beetles. Ecol. Entomol. 47, 689–702. https://doi.org/10.1111/een.13153 (2022).

    Article 

    Google Scholar
     

  • Gallego, B., Verdú, J. R., Carrascal, L. M. & Lobo, J. M. Thermal tolerance and recovery behaviour of Thorectes lusitanicus (Coleoptera, Geotrupidae). Ecol. Entomol. 42, 758–767. https://doi.org/10.1111/een.12447 (2017).

    Article 

    Google Scholar
     

  • Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of Dung beetles (Coleoptera: Geotrupinae). J. Therm. Biol. 74, 84–91. https://doi.org/10.1016/j.jtherbio.2018.03.009 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endothermic Dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J. Ins Physiol. 52, 854–860. https://doi.org/10.1016/j.jinsphys.2006.05.005 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Verdú, J. R. Chill tolerance variability within and among populations in the Dung beetle Canthon humectus hidalgoensis along an altitudinal gradient in the Mexican semiarid high plateau. J. Arid Environ. 75, 119–124. https://doi.org/10.1016/j.jaridenv.2010.09.010 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Amore, V., Hernández, M. I. M., Carrascal, L. M. & Lobo, J. M. Exoskeleton May influence the internal body temperatures of Neotropical Dung beetles (Col. Scarabaeinae). PeerJ 5, e3349. https://doi.org/10.7717/peerj.3349 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrascal, L. M., Ruiz, Y. J. & Lobo, J. M. Beetle exoskeleton May facilitate body heat acting differentially across the electromagnetic spectrum. Physiol. Biochem. Zool. 90, 338–347. https://doi.org/10.1086/690200 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance May determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. 28, 1076–1086. https://doi.org/10.1111/1744-7917.12844 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling Dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol. 32, 544–551. https://doi.org/10.1111/j.1365-2311.2007.00907.x (2007).

    Article 

    Google Scholar
     

  • Herzog, S. K. et al. Elevational distribution and conservation biogeography of phanaeine Dung beetles (Coleoptera: Scarabaeinae) in Bolivia. PLoS ONE. 8 https://doi.org/10.1371/journal.pone.0064963 (2013).

  • Agoglitta, R., Moreno, C. E., Zunino, M. E., Bonsignori, G. & Dellacasa, M. Cumulative annual Dung beetle diversity in mediterranean seasonal environments. Ecol. Res. 27, 387–395. https://doi.org/10.1007/s11284-011-0910-8 (2012).

    Article 

    Google Scholar
     

  • Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns 1st edn (Oxford University Press, 2004).

  • Giménez-Gómez, V. C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of Dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14. https://doi.org/10.1038/s41598-020-70284-8 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Stabentheiner, A., Kovac, H., Hetz, S. K., Käfer, H. & Stabentheiner, G. Assessing honeybee and Wasp thermoregulation and energetics – New insights by combination of flow-through respirometry with infrared thermography. Thermochim Acta. 534, 77–86. https://doi.org/10.1016/j.tca.2012.02.006 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, S., Zheng, F., Yue, L. & Chen, B. Chronic cadmium exposure impairs flight behavior by dampening flight muscle carbon metabolism in bumblebees. J. Hazard. Mater. 466, 133628. https://doi.org/10.1016/j.jhazmat.2024.133628 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boardman, L., Sørensen, J. G. & Terblanche, J. S. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. J. Insect Physiol. 59, 781–794. https://doi.org/10.1016/j.jinsphys.2013.05.005 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Putero, F. A., Mensch, J. & Schilman, P. E. Effect of brief exposures of anesthesia on thermotolerance and metabolic rate of the spotted-wing fly, Drosophila suzukii: differences between sexes? J. Insect Physiol. 149, 104549. https://doi.org/10.1016/j.jinsphys.2023.104549 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, S. H. & Ogbourne, S. M. Eco-toxicological effects of the avermectin family with a focus on abamectin and Ivermectin. Chemosphere 154, 204–214. https://doi.org/10.1016/j.chemosphere.2016.03.113 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iglesias, L. E. et al. Environmental impact of Ivermectin excreted by cattle treated in autumn on Dung fauna and degradation of faeces on pasture. Parasitol. Res. 100, 93–102. https://doi.org/10.1007/s00436-006-0240-x (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Marriner, S. E., McKinnon, I. & Bogan, J. A. The pharmacokinetics of Ivermectin after oral and subcutaneous administration to sheep and horses. J. Vet. Pharmacol. Ther. 10, 175–179. https://doi.org/10.1111/j.1365-2885.1987.tb00097.x (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forbes, A. B. A review of regional and Temporal use of avermectins in cattle and horses worldwide. Vet. Parasitol. 48, 19–28. https://doi.org/10.1016/0304-4017(93)90141-9 (1993).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Holter, P. & Scholtz, C. H. What do Dung beetles eat? Ecol. Entomol. 32, 690–697. https://doi.org/10.1111/j.1365-2311.2007.00915.x (2007).

    Article 

    Google Scholar
     

  • Miller, A. The mouth parts and digestive tract of adult Dung beetles (Coleoptera: Scarabaeidae), with reference to the ingestion of helminth eggs. J. Parasitol. 47, 735–744 (1961).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cambefort, Y. From saprophagy to coprophagy. In: (eds Hanski, I. & Cambefort, Y.) Dung Beetle Ecology. Princeton University Press, 22–35. (1991).

  • Holter, P. Particle feeding in Aphodius Dung beetles (Scarabaeidae): old hypotheses and new experimental evidence. Funct. Ecol. 14, 631–637. https://doi.org/10.1046/j.1365-2435.2000.00464.x (2000).

    Article 
    MATH 

    Google Scholar
     

  • Verdú, J. R. & Galante, E. Behavioural and morphological adaptations for a low-quality resource in semi-arid environments: Dung beetles (Coleoptera, Scarabaeoidea) associated with the European rabbit (Oryctolagus cuniculus L). J. Nat. Hist. 38, 705–715. https://doi.org/10.1080/0022293021000041707 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Verdú, J. R. et al. Nontoxic effects of thymol, carvacrol, cinnamaldehyde, and Garlic oil on Dung beetles: A potential alternative to ecotoxic anthelmintics. PLoS ONE. 18, 0295753. https://doi.org/10.1371/journal.pone.0295753 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lighton, J. R. B. Measuring metabolic rates: A manual for scientists. (New York ; online edn, Oxford Academic, 2008).

  • Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in Dung beetles: patterns and ecological implications. Oecologia 122, 452–458. https://doi.org/10.1007/s004420050966 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Three-quarters of species’ ranges have not been covered by protected areas...

    Protected area dataTerrestrial protected area data were derived from the February 2023 version of the World Database on Protected Areas (WDPA, accessible on:...
    Biodiversity
    13
    minutes

    Ectomycorrhizal fungal community varies across broadleaf species and developmental stages

    Cairney, J. W. G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 47, 198–208 (2012).Article  ...
    Biodiversity
    9
    minutes

    Latitudinal scaling of aggregation with abundance and coexistence in forests

    Study areasTwenty-one large forest dynamic plots of areas between 20 and 50 ha with similar numbers of tropical, subtropical and temperate forests were used...
    Biodiversity
    26
    minutes

    The global distribution patterns of alien vertebrate richness in mountains

    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).Article  ADS  ...
    Biodiversity
    12
    minutes
    spot_imgspot_img