Campbell, W. C. Ivermectin and Abamectin (Springer, 1989). https://doi.org/10.1007/978-1-4612-3626-9
Lanusse, C. et al. Comparative plasma disposition kinetics of Ivermectin, moxidectin and doramectin in cattle. J. Vet. Pharmacol. Ther. 20, 91–99. https://doi.org/10.1046/j.1365-2885.1997.00825.x (1997).
Prichard, R., Ménez, C. & Lespine, A. Moxidectin and the avermectins: consanguinity but not identity. Int. J. Parasitol. Drugs Drugs Resist. 2, 134–153. https://doi.org/10.1016/j.ijpddr.2012.04.001 (2012).
Lumaret, J. P., Errouissi, F., Floate, K. D., Römbke, J. & Wardhaugh, K. G. A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr. Pharm. Biotechnol. 13:1004–1060. https://doi.org/10.2174/138920112800399257(2012).
Verdú, J. R. et al. Low doses of Ivermectin cause sensory and locomotor disorders in Dung beetles. Sci. Rep. 5, 1–10. https://doi.org/10.1038/srep13912 (2015).
Ambrožová, L. et al. Lasting decrease in functionality and richness: effects of Ivermectin use on Dung beetle communities. Agric. Ecosyst. Environ. 321, 107634. https://doi.org/10.1016/j.agee.2021.107634 (2021).
Strong, L. & Overview The impact of avermectins on pastureland ecology. Vet. Parasitol. 48, 3–17. https://doi.org/10.1016/0304-4017(93)90140-I (1993).
Weaving, H., Sands, B. & Wall, R. Reproductive sublethal effects of macrocyclic lactones and synthetic pyrethroids on the Dung beetle Onthophagus similis. Bull. Entomol. Res. 110, 195–200. https://doi.org/10.1017/S0007485319000567 (2019).
Martínez-Morales, I., Lumaret, J. P., Ortiz, R. Z. & Kadiri, N. The effects of sublethal and lethal doses of Ivermectin on the reproductive physiology and larval development of the Dung beetle Euoniticellus intermedius (Coleoptera: Scarabaeidae). Can. Entomol. 149, 1–12. https://doi.org/10.4039/tce.2017.11 (2017).
Pérez-Cogollo, L. C., Rodríguez-Vivas, R. I., Reyes-Novelo, E. & Delfín-González, H. Muñoz-Rodríguez, D. Survival and reproduction of Onthophagus landolti (Coleoptera: Scarabaeidae) exposed to Ivermectin residues in cattle Dung. Bull. Entomol. Res. 107, 118–125. https://doi.org/10.1017/S0007485316000705 (2017).
Wardhaugh, K. G. & Rodriguez-Menendez, H. The effects of the antiparasitic drug, Ivermectin, on the development and survival of the Dung‐breeding fly, Orthelia cornicina (F.) and the scarabaeine Dung beetles, Copris hispanus L., Bubas bubalus (Oliver) and Onitis belial F. J. Appl. Entomol. 106, 381–389. https://doi.org/10.1111/j.1439-0418.1988.tb00607.x (1988).
Krüger, K. & Scholtz, C. H. Lethal and sublethal effects of Ivermectin on the dung-breeding beetles Euoniticellus intermedius (Reiche) and Onitis alexis Klug (Coleoptera, Scarabaeidae). Agric. Ecosyst. Environ. 61, 123–131. https://doi.org/10.1016/S0167-8809(96)01108-5 (1997).
González-Tokman, D. et al. Ivermectin alters reproductive success, body condition and sexual trait expression in Dung beetles. Chemosphere 178, 129–135. https://doi.org/10.1016/j.chemosphere.2017.03.013 (2017).
Rodríguez-Vivas, R. I. et al. Evaluation of the attraction, lethal and sublethal effects of the faeces of ivermectin-treated cattle on the Dung beetle Digitonthophagus gazella (Coleoptera: Scarabaeidae). Aust. Entomol. 59, 368–374. https://doi.org/10.1111/aen.12450 (2020).
Verdú, J. R. et al. First assessment of the comparative toxicity of Ivermectin and moxidectin in adult Dung beetles: Sub-lethal symptoms and pre-lethal consequences. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-33241-0 (2018).
Verdú, J. R. et al. Biomagnification and body distribution of Ivermectin in Dung beetles. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-66063-0 (2020).
González-Tokman, D. et al. Effect of chemical pollution and parasitism on heat tolerance in Dung beetles (Coleoptera: Scarabaeinae). J. Econ. Entomol. 114, 462–467. https://doi.org/10.1093/jee/toaa216 (2020).
Villada-Bedoya, S. et al. Heat shock proteins and antioxidants as mechanisms of response to Ivermectin in the Dung beetle Euoniticellus intermedius. Chemosphere 269, 128707. https://doi.org/10.1016/j.chemosphere.2020.128707 (2021).
Verdú, J. R. & Lobo, J. M. Ecophysiology of thermoregulation in endothermic dung beetles: Ecological and geographical implications. Research Signpost 37/661 (2). In: Insect Ecology and Conservation, : ISBN: 978-81-308-0297-8 (2008).
Heinrich, B. & Bartholomew, G. A. Roles of endothermy and size in inter- and intraspecific competition for elephant Dung in an African Dung beetle, Scarabaeus laevistriatus. Physiol. Zool. 52, 484–496. https://doi.org/10.1086/physzool.52.4.30155939 (1979).
Scholtz, C. H., Davis, A. L. V. & Kryger, U. Evolutionary Biology and Conservation of Dung Beetles 1st edn (Pensoft, 2009).
Simmons, L. W. et al. Ecology and Evolution of Dung Beetles 1st edn (Blackwell Publishing Ltd., 2011).
Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography. PLoS ONE. 7, e33914. https://doi.org/10.1371/journal.pone.0033914 (2012).
Verdú, J. R., Cortez, V., Oliva, D. & Giménez-Gómez, V. C. Thermoregulatory syndromes of two sympatric Dung beetles with low energy costs. J. Insect Physiol. 118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945 (2019).
Verdú, J. R., Oliva, D., Giménez-Gómez, V. C. & Cortez, V. Differential ecophysiological syndromes explain the partition of the thermal niche resource in coexisting eucraniini Dung beetles. Ecol. Entomol. 47, 689–702. https://doi.org/10.1111/een.13153 (2022).
Gallego, B., Verdú, J. R., Carrascal, L. M. & Lobo, J. M. Thermal tolerance and recovery behaviour of Thorectes lusitanicus (Coleoptera, Geotrupidae). Ecol. Entomol. 42, 758–767. https://doi.org/10.1111/een.12447 (2017).
Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of Dung beetles (Coleoptera: Geotrupinae). J. Therm. Biol. 74, 84–91. https://doi.org/10.1016/j.jtherbio.2018.03.009 (2018).
Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endothermic Dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J. Ins Physiol. 52, 854–860. https://doi.org/10.1016/j.jinsphys.2006.05.005 (2006).
Verdú, J. R. Chill tolerance variability within and among populations in the Dung beetle Canthon humectus hidalgoensis along an altitudinal gradient in the Mexican semiarid high plateau. J. Arid Environ. 75, 119–124. https://doi.org/10.1016/j.jaridenv.2010.09.010 (2011).
Amore, V., Hernández, M. I. M., Carrascal, L. M. & Lobo, J. M. Exoskeleton May influence the internal body temperatures of Neotropical Dung beetles (Col. Scarabaeinae). PeerJ 5, e3349. https://doi.org/10.7717/peerj.3349 (2017).
Carrascal, L. M., Ruiz, Y. J. & Lobo, J. M. Beetle exoskeleton May facilitate body heat acting differentially across the electromagnetic spectrum. Physiol. Biochem. Zool. 90, 338–347. https://doi.org/10.1086/690200 (2017).
Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance May determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. 28, 1076–1086. https://doi.org/10.1111/1744-7917.12844 (2021).
Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling Dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol. 32, 544–551. https://doi.org/10.1111/j.1365-2311.2007.00907.x (2007).
Herzog, S. K. et al. Elevational distribution and conservation biogeography of phanaeine Dung beetles (Coleoptera: Scarabaeinae) in Bolivia. PLoS ONE. 8 https://doi.org/10.1371/journal.pone.0064963 (2013).
Agoglitta, R., Moreno, C. E., Zunino, M. E., Bonsignori, G. & Dellacasa, M. Cumulative annual Dung beetle diversity in mediterranean seasonal environments. Ecol. Res. 27, 387–395. https://doi.org/10.1007/s11284-011-0910-8 (2012).
Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns 1st edn (Oxford University Press, 2004).
Giménez-Gómez, V. C., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of Dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14. https://doi.org/10.1038/s41598-020-70284-8 (2020).
Stabentheiner, A., Kovac, H., Hetz, S. K., Käfer, H. & Stabentheiner, G. Assessing honeybee and Wasp thermoregulation and energetics – New insights by combination of flow-through respirometry with infrared thermography. Thermochim Acta. 534, 77–86. https://doi.org/10.1016/j.tca.2012.02.006 (2012).
Gao, S., Zheng, F., Yue, L. & Chen, B. Chronic cadmium exposure impairs flight behavior by dampening flight muscle carbon metabolism in bumblebees. J. Hazard. Mater. 466, 133628. https://doi.org/10.1016/j.jhazmat.2024.133628 (2024).
Boardman, L., Sørensen, J. G. & Terblanche, J. S. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. J. Insect Physiol. 59, 781–794. https://doi.org/10.1016/j.jinsphys.2013.05.005 (2013).
Putero, F. A., Mensch, J. & Schilman, P. E. Effect of brief exposures of anesthesia on thermotolerance and metabolic rate of the spotted-wing fly, Drosophila suzukii: differences between sexes? J. Insect Physiol. 149, 104549. https://doi.org/10.1016/j.jinsphys.2023.104549 (2023).
Bai, S. H. & Ogbourne, S. M. Eco-toxicological effects of the avermectin family with a focus on abamectin and Ivermectin. Chemosphere 154, 204–214. https://doi.org/10.1016/j.chemosphere.2016.03.113 (2016).
Iglesias, L. E. et al. Environmental impact of Ivermectin excreted by cattle treated in autumn on Dung fauna and degradation of faeces on pasture. Parasitol. Res. 100, 93–102. https://doi.org/10.1007/s00436-006-0240-x (2006).
Marriner, S. E., McKinnon, I. & Bogan, J. A. The pharmacokinetics of Ivermectin after oral and subcutaneous administration to sheep and horses. J. Vet. Pharmacol. Ther. 10, 175–179. https://doi.org/10.1111/j.1365-2885.1987.tb00097.x (1987).
Forbes, A. B. A review of regional and Temporal use of avermectins in cattle and horses worldwide. Vet. Parasitol. 48, 19–28. https://doi.org/10.1016/0304-4017(93)90141-9 (1993).
Holter, P. & Scholtz, C. H. What do Dung beetles eat? Ecol. Entomol. 32, 690–697. https://doi.org/10.1111/j.1365-2311.2007.00915.x (2007).
Miller, A. The mouth parts and digestive tract of adult Dung beetles (Coleoptera: Scarabaeidae), with reference to the ingestion of helminth eggs. J. Parasitol. 47, 735–744 (1961).
Cambefort, Y. From saprophagy to coprophagy. In: (eds Hanski, I. & Cambefort, Y.) Dung Beetle Ecology. Princeton University Press, 22–35. (1991).
Holter, P. Particle feeding in Aphodius Dung beetles (Scarabaeidae): old hypotheses and new experimental evidence. Funct. Ecol. 14, 631–637. https://doi.org/10.1046/j.1365-2435.2000.00464.x (2000).
Verdú, J. R. & Galante, E. Behavioural and morphological adaptations for a low-quality resource in semi-arid environments: Dung beetles (Coleoptera, Scarabaeoidea) associated with the European rabbit (Oryctolagus cuniculus L). J. Nat. Hist. 38, 705–715. https://doi.org/10.1080/0022293021000041707 (2004).
Verdú, J. R. et al. Nontoxic effects of thymol, carvacrol, cinnamaldehyde, and Garlic oil on Dung beetles: A potential alternative to ecotoxic anthelmintics. PLoS ONE. 18, 0295753. https://doi.org/10.1371/journal.pone.0295753 (2023).
Lighton, J. R. B. Measuring metabolic rates: A manual for scientists. (New York ; online edn, Oxford Academic, 2008).
Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in Dung beetles: patterns and ecological implications. Oecologia 122, 452–458. https://doi.org/10.1007/s004420050966 (2000).