Late Paleolithic whale bone tools reveal human and whale ecology in the Bay of Biscay


  • Christensen, L. B. Marine mammal populations: reconstructing historical abundances at the global scale. Fish. Cent. Res. Rep. 14, 1–161 (2006).


    Google Scholar
     

  • Charpentier, A. et al. What’s in a whale bone? combining new analytical methods, ecology and history to shed light on ancient human-whale interactions. Quat. Sci. Rev. 284, 107470 (2022).

    Article 

    Google Scholar
     

  • Smith, A. B., Kinahan, J. The invisible whale. World Archaeol. 16, 89–97 (1984).

  • Gusinde, M. et al. Los Indios de Tierra del Fuego: los Yamana, Buenos Aires, CAEA. (1986).

  • Turner, L. M. et al. An Aleutian Ethnography, Fairbanks, University of Alaska Press (2008).

  • Lee, S. M. et al. Chasseurs de baleines: la frise de Bangudae, Corée du Sud, Paris, Errance. (2011).

  • van den Hurk, Y. et al. The prelude to industrial whaling: identifying the targets of ancient European whaling using zooarchaeology and collagen mass-peptide fingerprinting. R. Soc. Open Sci. 10, 230741 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nabais, M., Soares, R. & van den Hurk, Y. The Zooarchaeology of ancient whaling practices in Portugal: A review and a new Roman Republican contribution at Castelo Velho de Safara. PLoS ONE 19, e0310215 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erlandson, J. M. The archaeology of aquatic adaptations: paradigms for a new millennium. J. Archaeological Res. 9, 287–350 (2001).

    Article 

    Google Scholar
     

  • Pétillon, J.-M. et al. Life on the shore of the Bay of Biscay in the Late Upper Paleolithic: towards a new paradigm. In: Dupont, C., Marchand, G. (eds.), Archéologie des chasseurs-cueilleurs maritimes. De la fonction des habitats à l’organisation de l’espace littoral, Paris, Société préhistorique française, 23–36 (2016).

  • Álvarez-Fernández, E. et al. Mise à jour des recherches sur les chasseurs-cueilleurs côtiers dans le sud-est de la péninsule ibérique durant le Magdalénien: les restes archéofauniques d’origine marine. In: Costamagno, S., Boudadi-Maligne, M., Daujeard, C., Fernandez, P., Stoetzel, E. (eds.), Sociétés humaines et environnements dans la zone circumméditerranéenne du Pléistocène au début de l’Holocène, Les Eyzies-de-Tayac-Sireuil, Musée national de Préhistoire (Paléo hors-série), 50–63 (2022).

  • Castaños, P. et al. Estudio de los macromamíferos del yacimiento de Santa Catalina. In: Berganza E., Arribas J.L. (eds.), La Cueva de Santa Catalina (Lekeitio): La intervención arqueológica. Restos vegetales, animales y humanos, Bilbao, Kobie serie BAI 4, 331–360 (2014).

  • Corchón, M. S., Álvarez-Fernández, E. Nuevas evidencias de restos de mamíferos marinos en el Magdaleniense: los datos de La Cueva de Las Caldas (Asturias, España). Munibe 59, 47–66 (2008).

  • Lefebvre, A. et al. Interconnected Magdalenian societies as revealed by the circulation of whale bone artefacts in the Pyreneo-Cantabrian region. Quat. Sci. Rev. 251, 106692 (2021).

  • Cortés-Sánchez, M. et al. Earliest known use of marine resources by Neanderthals. PLoS ONE 6, e24026 (2011).

  • Gutiérrez-Zugasti, I. et al. A chrono-cultural reassessment of the levels VI–XIV from El Cuco rock-shelter: a new sequence for the Late Middle Paleolithic in the Cantabrian region (northern Iberia). Quat. Intel. 474, 44–55 (2018).

  • Zilhão, J. et al. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, eaaz7943 (2020).

  • Álvarez-Fernández, E. Marine resource exploitation during the Middle and Early Upper Paleolithic in. Europe: Overv. available Evid. P@lethnology 7, 188–205 (2015).


    Google Scholar
     

  • Fano, M. A., Gutiérrez-Zugasti, I., Álvarez-Fernández, E., Fernández-García, R. Late Glacial and Postglacial use of marine resources in the Bay of Biscay, North Spain. In: Shell energy: Mollusc shells as coastal resources, Bailey, G. N., Hardy, K., Camara, A. eds., Oxbow Books, Oxford, 155–166 (2013).

  • Aura, J. E. et al. Palaeolithic – Epipalaeolithic Seapeople of the Southern Iberian coast (Spain): an overview. In: Dupont, C., Marchand, G. (eds.), Archéologie des chasseurs-cueilleurs maritimes. De la fonction des habitats à l’organisation de l’espace littoral, Paris, Société préhistorique française, 69–92 (2016).

  • Bicho, N., Haws, J. A., Davis, L. G. (eds). Trekking the Shore. Changing Coastlines and the Antiquity of Coastal Settlement, New York, Springer, (2011).

  • Stewart, K., Cunnane, S., Tattersall, I. eds. 2014. The role of freshwater and marine resources in the evolution of the human diet, brain and behavior. Journal of Human Evolution 77, 1–216.

  • Dupont, C., Marchand, G. (eds). Archéologie des chasseurs-cueilleurs maritimes. De la fonction des habitats à l’organisation de l’espace littoral, Paris, Société préhistorique française, 425 (2016).

  • Pétillon, J.-M. Circulation of whale-bone artifacts in the northern Pyrenees during the Late Upper Paleolithic. J. Hum. Evolution 65, 525–543 (2013).

    Article 

    Google Scholar
     

  • Rodrigues, A. S. L., Horwitz, L. K., Monsarrat, S. & Charpentier, A. Ancient whale exploitation in the Mediterranean: species matters. Antiquity 90, 928–938 (2016).

    Article 

    Google Scholar
     

  • Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, M. et al. ZooMS: the collagen barcode and fingerprints. Spectrosc. Eur. 22, 6–10 (2010).

    CAS 

    Google Scholar
     

  • Pétillon, J.-M. et al. Échos de l’océan: phoques et baleines en Europe au Paléolithique récent. In: Cattelain, P., Gillard, M., Smolderen A. (eds.), Disparus? Les mammifères au temps de Cro-Magnon en Europe, Treignes, Cedarc, 335–354 (2018).

  • Christensen, M. et al. L’industrie osseuse des chasseurs-cueilleurs: le cas des nomades marins de Patagonie et Terre de Feu, Punta Arenas, Universidad de Magallanes. (2016).

  • Gray, N. M., Kainec, K., Madar, S., Tomko, L. & Wolfe, S. Sink or swim? bone density as a mechanism for buoyancy control in early Cetaceans. Anat. Rec. 290, 638–653 (2007).

    Article 

    Google Scholar
     

  • Lyman, R. L. et al. Bone density and bone attrition. In: Pokines, J. T., L’Abbe, E. N., Symes, S. A. (eds.), Manual of forensic taphonomy, Boca Raton, CRC Press (2021).

  • Müller, K. & Reiche, I. Differentiation of archaeological ivory and bone materials by micro- PIXE/PIGE with emphasis on two Upper Palaeolithic key sites: Abri Pataud and Isturitz, France. J. Archaeological Sci. 38, 3234–3243 (2011).

    Article 

    Google Scholar
     

  • Reiche, I., Müller, K., Staude, A., Goebbels, J. & Riesenmeier, H. Synchrotron radiation and laboratory micro X-ray computed tomography—useful tools for the material identification of prehistoric objects made of ivory, bone or antler. J. Anal. At. Spectrom. 26, 1802–1812 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Waelbroeck, C. et al. Sea-level and deepwater temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Pétillon, J.-M., Chauvière, F.-X. Les mammifères marins. In: Cretin, C., Madelaine, S. (eds.), Animaux rares, gibiers inattendus: reflets de la biodiversité, Les Eyzies-de-Tayac – Sireuil, Musée national de préhistoire, 92–96 (2019).

  • Pétillon, J.-M. et al. A gray whale in Magdalenian perigord. Species identification of a bone projectile point from La Madeleine (Dordogne, France) using collagen fingerprinting. Paleo 30, 230–242 (2019).

    Article 

    Google Scholar
     

  • Lucas, C. et al. The Magdalenian osseous industry from Courbet cave (Penne, Tarn, France) in the British Museum collections. Bull. de. la Soci.été pr.éhistorique française 120, 135–160 (2023).


    Google Scholar
     

  • Langlais, M. et al. Des segments chronoculturels au modèle archéo-stratigraphique du Magdalénien dans le Sud-Ouest français (21 000-16 000 cal. BP). In: Straus, L. G., Langlais, M. eds. Magdalenian chrono-stratigraphic correlations and cultural connections between Cantabrian Spain and Southwest France and beyond, Paris, Société préhistorique française, 109–135 (2020).

  • Pétillon, J.-M. Technological evolution of hunting implements among Pleistocene hunter-gatherers: osseous projectile points in the Middle and Upper Magdalenian (19–14 ky cal BP). Quat. Int. 414, 108–134 (2016).

    Article 

    Google Scholar
     

  • Langley, M. C. & Street, M. Long range inland-coastal networks during the Late Magdalenian: evidence for individual acquisition of marine resources at Andernach-Martinsberg. Ger. Cent. Rhineland. J. Hum. Evolution 64, 457–465 (2013).

    Article 

    Google Scholar
     

  • Laran, S. et al. Seasonal distribution and abundance of cetaceans within French waters – Part II: The Bay of Biscay and the English Channel. Deep Sea Res. Part II: Topical Stud. Oceanogr. 141, 31–40 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Westley, K. & Dix, J. The solutrean atlantic hypothesis: a view from the ocean. J. North Atl. 1, 85–98 (2008).

    Article 

    Google Scholar
     

  • Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. 113, 868–873 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, L., Jeanniard-du-Dot, T., Authier, M., Chouvelon, T. & Spitz, J. Composition of cetacean communities worldwide shapes their contribution to ocean nutrient cycling. Nat. Commun. 14, 5823 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, D. E., Mittermeier, R. A. Handbook of the Mammals of the World: Sea Mammals, Barcelona, Lynx Edicions, 4, 614 (2014).

  • Reeves, R. R., Smith, T. M., Josephson, E. A. Near-annihilation of a species: right whaling in the North Atlantic. In: Kraus, S. D., Rolland, R. M. (eds.), The Urban Whale: North Atlantic Right Whales at the Crossroads, Harvard, Harvard University Press, 39–74 (2007).

  • Allen, R. C. & Keay, I. Bowhead Whales in the Eastern Arctic, 1611–1911: population reconstruction with historical whaling records. Environ. Hist. 12, 89–113 (2006).

    Article 

    Google Scholar
     

  • Rodrigues, A. S. L. et al. Forgotten Mediterranean calving grounds of grey and North Atlantic right whales: evidence from Roman archaeological records. Proc. R. Soc. B 285, 20180961 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alter, S. E. et al. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100. Mol. Ecol. 24, 1510–1522 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hufthammer, A. K., Arntsen, L., Kitchener, A. C. & Buckley, M. Grey whale (Eschrichtius robustus) in Norwegian waters 2000 years ago. Palaeogeogr., Palaeoclimatol., Palaeoecol. 495, 42–47 (2018).

    Article 

    Google Scholar
     

  • Garrison, E. G., Morgan, G. S., Mcgrath, K., Speller, C. & Cherkinsky, A. Recent dating of extinct Atlantic gray whale fossils (Eschrichtius robustus), Georgia Bight and Florida, western Atlantic Ocean. PeerJ 7, e6381 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buss, D. L. et al. Archaeological evidence of resource utilisation of the great whales over the past two millennia: a systematic review protocol. PLoS ONE 18, e0295604 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Vernet, R., Borrell, A., Víkingsson, G., Halldórsson, S. D. & Aguilar, A. Ecological niche partitioning between baleen whales inhabiting Icelandic waters. Prog. Oceanogr. 199, 102690 (2021).

    Article 

    Google Scholar
     

  • Borrell, A., Abad-Oliva, N., Gómez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blevins, C. et al. Sex- and age-specific migratory strategies of blue whales in the northeast Pacific. Ocean. Front. Mar. Sci. 9, 944918 (2022).

    Article 

    Google Scholar
     

  • Caraveo-Patiño, J., Hobson, K. A. & Soto, L. A. Feeding ecology of gray whales inferred from stable-carbon and nitrogen isotopic analysis of baleen plates. Hydrobiologia 586, 17–25 (2007).

    Article 

    Google Scholar
     

  • Ruiz-Cooley, R. I., Gendron, D., Aguíñiga, S., Mesnick, S. & Carriquiry, J. D. Trophic relationships between sperm whales and jumbo squid using stable isotopes of C and N. Mar. Ecol. Prog. Ser. 277, 275–283 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Reade, H. et al. Nitrogen palaeo-isoscapes: changing spatial gradients of faunal δ 15 N in late Pleistocene and early Holocene Europe. PLoS ONE 18, e0268607 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seersholm, F. V. et al. DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4000 years ago. Nat. Commun. 7, 13389 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Philippe, M. Un état des connaissances sur la navigation préhistorique en Europe atlantique. Bull. de. la Soci.été pr.éhistorique française 115, 567–597 (2018).

    Article 

    Google Scholar
     

  • MacLeod, K. et al. Distribution and abundance of fin whales and other baleen whales in the European Atlantic. https://doi.org/10.13140/RG.2.2.19767.52649 (2009).

  • Speller, C. et al. Barcoding the largest animals on Earth: Ongoing challenges and molecular solutions in the taxonomic identification of ancient Cetaceans. Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 371, 1702 (2016).

    Article 

    Google Scholar
     

  • Berganza E., Arribas J. L. El entorno físico de las ocupaciones de Santa Catalina. In: Berganza E., Arribas J.L. (eds.), La Cueva de Santa Catalina (Lekeitio): La intervención arqueológica. Restos vegetales, animales y humanos, Bilbao, Kobie serie BAI 4, 367–377 (2014).

  • Costamagno, S., Théry-Parisot, I., Castel, J.-C., Brugal, J.-P. Combustible ou non? analyse factorielle et modèles explicatifs sur des ossements brûlés paléolithiques. In: Théry-Parisot, I., Costamagno, S., Henry, A. (eds.), Gestion des combustibles au Paléolithique et au Mésolithique: nouveaux outils, nouvelles interprétations, Oxford, Archaeopress, 69–84 (2009).

  • Berganza E., Arribas J. L. Estructuras de combustión. In: Berganza E., Arribas J.L. (eds.), La Cueva de Santa Catalina (Lekeitio): La intervención arqueológica. Restos vegetales, animales y humanos, Bilbao, Kobie serie BAI 4, 33–48 (2014).

  • Costamagno, S., Rigaud, J.-P. L’exploitation de la graisse au Paléolithique. In: Costamagno, S. (ed.), Histoire de l’alimentation humaine: entre choix et contraintes, Paris, CTHS, 134–152 (2014).

  • Berganza, E., Arribas, J. L. Síntesis interpretativa. In: Berganza E., Arribas J.L. (eds.), La cueva de Santa Catalina (Lekeitio, Bizkaia). Industrias líticas y óseas, colorantes y arte mobiliar, Bilbao, Kobie serie BAI 10, 267–285.(2022).

  • Hussain, S. T. et al. Was the Late Glacial human occupation of northernmost Europe facilitated by whales? New data and perspectives on lithic technology and the paleoecology of the Vendsyssel area, Northern Jutland, Denmark. J. Isl. Coast. Archaeol. 1–29 https://doi.org/10.1080/15564894.2023.2277727 (2024).

  • Poplin, F. Le bison en os de baleine d’Isturitz (Pyrénées-Atlantiques). Arch.éologie des. Pyrénées Occidentales et. des. Landes 32, 27–28 (2020).


    Google Scholar
     

  • Fiddyment, S. et al. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proc. Natl Acad. Sci. 112, 15066–15071 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGrath, K. et al. Identifying archaeological bone via non-destructive ZooMS and the materiality of symbolic expression: Examples from Iroquoian bone points. Sci. Rep. 9, 11027 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strohalm, M., Hassman, M., Košata, B. & Kodíček, M. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Buckley, M. & Collins, M. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua 1, e1–e7 (2011).

    Article 

    Google Scholar
     

  • Kirby, D. P., Buckley, M., Promise, E., Trauger, S. A. & Holdcraft, T. R. Identification of collagen-based materials in cultural heritage. Analyst 138, 4849–4858 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckley, M. et al. Species identification of archaeological marine mammals using collagen fingerprinting. J. Archaeological Sci. 41, 631–641 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coutu, A. N. et al. Palaeoproteomics confirm earliest domesticated sheep in southern Africa ca. 2000 BP. Sci. Rep. 11, 6631 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, Z., Paskulin, L., Rahemtulla, F. & Speller, C. F. A comparison of minimally-invasive sampling techniques for ZooMS analysis of bone artifacts. J. Archaeological Sci.: Rep. 47, 103738 (2023).

    Article 

    Google Scholar
     

  • van der Sluis, L. G. et al. Identification and tentative removal of collagen glue in Palaeolithic worked bone objects: implications for ZooMS and radiocarbon dating. Sci. Rep. 13, 22119 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longin, R. New method of collagen extraction for radiocarbon dating. Nature 231, 241–242 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Stafford, T. W. Jr, Duhamel, R. C., Haynes, C. V. Jr & Brendel, K. Isolation of proline and hydroxyproIine from fossil bone. Life Sci. 31, 931–938 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stafford, T. W. Jr, Jull, A. J. T., Brendel, K., Duhamel, R. C. & Donahue, D. Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis. Radiocarbon 29, 24–44 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Stafford, T. W. Jr., Brendel, K. & Duhamel, R. C. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica et. Cosmochima Acta 52, 2257–2267 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van der Sluis, L. G., Zazzo, A., Tombret, O., Thil, F. & Pétillon, J.-M. Testing the use of XAD resin to remove synthetic contamination from archaeological bone prior to radiocarbon dating. Radiocarbon 65, 1160–1175 (2023).

    Article 

    Google Scholar
     

  • Wacker, L., Christl, M. & Synal, H.-A. Bats: A new tool for AMS data reduction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 268, 976–979 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reimer, P. J. et al. INTCAL04 Terrestrial. Radiocarb. Age Calibration, 0-26 Cal. KYR BP, Radiocarb. 46, 1029–1058 (2004).

    CAS 

    Google Scholar
     

  • Brock et al. Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (ORAU). Radiocarbon 52, 103–112 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Steier, P., Liebl, J., Kutschera, W., Wild, E. & Golser, R. Preparation methods of μg carbon samples for 14C Measurements. Radiocarbon 59, 803–814 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Golser, R. & Kutschera, W. Twenty years of VERA: toward a universal facility for accelerator mass spectrometry. Nucl. Phys. N. 27, 29–34 (2017).

    Article 

    Google Scholar
     

  • Santos, G. M. et al. AMS 14 C sample preparation at the KCCAMS/UCI facility: status report and performance of small samples. Radiocarbon 49, 255–269 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Beverly, R. K. et al. The keck carbon cycle AMS laboratory, University of California, Irvine: status report. Radiocarbon 52, 301–309 (2010).

    Article 

    Google Scholar
     

  • DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeological Sci. 26, 687–695 (1999).

    Article 

    Google Scholar
     

  • Guiry, E. J. & Szpak, P. Quality control for modern bone collagen stable carbon and nitrogen isotope measurements. Methods Ecol. Evolution 11, 1049–1060 (2020).

    Article 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20 – The marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dury, J. P. et al. Species-specific reservoir effect estimates: a case study of archaeological marine samples from the Bering Strait. Holocene 32, 1209–1221 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 

    Google Scholar
     

  • Heaton, T. J. et al. Marine radiocarbon calibration in polar regions: a simple approximate approach using Marine20. Radiocarbon 65, 848–875 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Beck, L. et al. Marine reservoir effect of spermaceti, a wax obtained from the head of the sperm whale: a first estimation from museum specimens. Radiocarbon 64, 1607–1616 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pieńkowski, A., Coulthard, R. D. & Furze, M. F. A. Revised marine reservoir offset (Δ R) values for molluscs and marine mammals from Arctic North America. Boreas 52, 145–167 (2022).

    Article 

    Google Scholar
     

  • Birkenmajer, K. & Olsson, U. Radiocarbon dating of whale bones from the 17th century whaling sites at Gashamna, Hornsund, South Spitsbergen. Bulletin of the Polish Academy of Sciences. Earth Sci. 46, 109–132 (1998).


    Google Scholar
     

  • England, J., Dyke, A. S., Coulthard, R. D., McNeely, R. & Aitken, A. The exaggerated radiocarbon age of deposit-feeding molluscs in calcareous environments. Boreas 42, 362–373 (2013).

    Article 

    Google Scholar
     

  • Foote, A. D. et al. Ancient DNA reveals that bowhead whale lineages survived Late Pleistocene climate change and habitat shifts. Nat. Commun. 4, 1677 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Monge Soares, A. M. et al. Marine radiocarbon reservoir effect in Late Pleistocene and early Holocene coastal waters off Northern Iberia. Radiocarbon 58, 869–883 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A. K. & Høisæter, T. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quat. Sci. Rev. 25, 3228–3245 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Reimer, R. & Reimer, P. J. An online application for ΔR calculation. Radiocarbon 59, 1623–1627 (2017).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img