Leveraging biodiversity to maximize nutrition and resilience of global fisheries


  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article 
    CAS 

    Google Scholar
     

  • van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    Article 

    Google Scholar
     

  • Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).

    Article 

    Google Scholar
     

  • Hanley-Cook, G. T. et al. Food biodiversity: quantifying the unquantifiable in human diets. Crit. Rev. Food Sci. Nutr. 63, 7837–7851 (2022).

    Article 

    Google Scholar
     

  • Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bernhardt, J. R. & O’Connor, M. I. Aquatic biodiversity enhances multiple nutritional benefits to humans. Proc. Natl Acad. Sci. USA 118, e1917487118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heilpern, S. A. et al. Species trait diversity sustains multiple dietary nutrients supplied by freshwater fisheries. Ecol. Lett. 26, 1887–1897 (2023).

    Article 

    Google Scholar
     

  • Walker, B. et al. Response diversity as a sustainability strategy. Nat. Sustain. https://doi.org/10.1038/s41893-022-01048-7 (2023).

  • Heilpern, S. A. et al. Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon. Nat. Food 2, 192–197 (2021).

    Article 

    Google Scholar
     

  • Belton, B. & Thilsted, S. H. Fisheries in transition: food and nutrition security implications for the global South. Glob. Food Sec. 3, 59–66 (2014).

    Article 

    Google Scholar
     

  • van Dooren, C. A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. Front. Nutr. 5, 48 (2018).

    Article 

    Google Scholar
     

  • Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation (FAO, 2010).

  • Vitamin and Mineral Requirements in Human Nutrition (WHO and FAO, 2004).

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Heilpern, S. A. et al. Declining diversity of wild-caught species puts dietary nutrient supplies at risk. Sci. Adv. 7, eabf9967 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    Article 

    Google Scholar
     

  • Olden, J. D., Hogan, Z. S. & Zanden, M. J. V. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).

    Article 

    Google Scholar
     

  • Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article 

    Google Scholar
     

  • Robinson, J. P. W. et al. Small pelagic fish supply abundant and affordable micronutrients to low- and middle-income countries. Nat. Food 3, 1075–1084 (2022).

    Article 

    Google Scholar
     

  • Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).

    Article 

    Google Scholar
     

  • Garcia, S. M. et al. Reconsidering the consequences of selective fisheries. Science 335, 1045–1047 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Duffy, J. E., Lefcheck, J. S., Stuart-Smith, R. D., Navarrete, S. A. & Edgar, G. J. Biodiversity enhances reef fish biomass and resistance to climate change. Proc. Natl Acad. Sci. USA 113, 6230–6235 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ross, S. R. P.-J., Petchey, O. L., Sasaki, T. & Armitage, D. W. How to measure response diversity. Methods Ecol. Evol. 14, 1150–1167 (2023).

    Article 

    Google Scholar
     

  • Gephart, J. A. et al. Globalization of wild capture and farmed aquatic foods. Nat. Commun. 15, 8026 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fiorella, K. J., Bageant, E. R., Thilsted, S. H. & Heilpern, S. A. Commercially traded fish portfolios mask household utilization of biodiversity in wild food systems. Proc. Natl Acad. Sci. USA 121, e2403691121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V. & Ota, Y. A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 11, e0166681 (2016).

    Article 

    Google Scholar
     

  • Heilpern, S. A. et al. Nutritional challenges of substituting farmed animals for wild fish in human diets. Environ. Res. Lett. 18, 114030 (2023).

    Article 

    Google Scholar
     

  • Ambikapathi, R. et al. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Nat. Food 3, 764–779 (2022).

    Article 

    Google Scholar
     

  • Loken, B., Dhar, M. & Rapando, N. P. Healthy and sustainable diets must be culturally acceptable too. Nat. Food 5, 723–724 (2024).

    Article 

    Google Scholar
     

  • Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).

    Article 

    Google Scholar
     

  • Lynch, A. J. et al. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nat. Sustain. https://doi.org/10.1038/s41893-020-0517-6 (2020).

  • Halpern, B. S. et al. Opinion: putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    Article 

    Google Scholar
     

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 

    Google Scholar
     

  • Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).

    Article 

    Google Scholar
     

  • Schiettekatte, N. M. D. et al. Biological trade-offs underpin coral reef ecosystem functioning. Nat. Ecol. Evol. 6, 701–708 (2022).

    Article 

    Google Scholar
     

  • Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97, 3460–3471 (2016).

    Article 

    Google Scholar
     

  • McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Miranda, R. et al. Monitoring extinction risk and threats of the world’s fishes based on the Sampled Red List Index. Rev. Fish Biol. Fish. 32, 975–991 (2022).

    Article 

    Google Scholar
     

  • Froese, R. & Pauly, D. FishBase version 02/2019 (2019); www.fishbase.org

  • Csárdi, G. & Berkelaar, M. lpSolve: Interface to ‘Lp_solve’ v. 5.5 to Solve Linear/Integer Programs (2024).

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 

    Google Scholar
     

  • Dinno, A. paran: Horn’s Test of Principal Components/Factors (2018).

  • Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar
     

  • R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • Heilpern, S. et al. Data and code for ‘Leveraging biodiversity to maximize nutrition and resilience of global fisheries’. Figshare https://doi.org/10.6084/m9.figshare.24615465 (2025).



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img