Leveraging biodiversity to maximize nutrition and resilience of global fisheries


  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article 
    CAS 

    Google Scholar
     

  • van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).

    Article 

    Google Scholar
     

  • Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).

    Article 

    Google Scholar
     

  • Hanley-Cook, G. T. et al. Food biodiversity: quantifying the unquantifiable in human diets. Crit. Rev. Food Sci. Nutr. 63, 7837–7851 (2022).

    Article 

    Google Scholar
     

  • Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bernhardt, J. R. & O’Connor, M. I. Aquatic biodiversity enhances multiple nutritional benefits to humans. Proc. Natl Acad. Sci. USA 118, e1917487118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heilpern, S. A. et al. Species trait diversity sustains multiple dietary nutrients supplied by freshwater fisheries. Ecol. Lett. 26, 1887–1897 (2023).

    Article 

    Google Scholar
     

  • Walker, B. et al. Response diversity as a sustainability strategy. Nat. Sustain. https://doi.org/10.1038/s41893-022-01048-7 (2023).

  • Heilpern, S. A. et al. Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon. Nat. Food 2, 192–197 (2021).

    Article 

    Google Scholar
     

  • Belton, B. & Thilsted, S. H. Fisheries in transition: food and nutrition security implications for the global South. Glob. Food Sec. 3, 59–66 (2014).

    Article 

    Google Scholar
     

  • van Dooren, C. A review of the use of linear programming to optimize diets, nutritiously, economically and environmentally. Front. Nutr. 5, 48 (2018).

    Article 

    Google Scholar
     

  • Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation (FAO, 2010).

  • Vitamin and Mineral Requirements in Human Nutrition (WHO and FAO, 2004).

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Heilpern, S. A. et al. Declining diversity of wild-caught species puts dietary nutrient supplies at risk. Sci. Adv. 7, eabf9967 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    Article 

    Google Scholar
     

  • Olden, J. D., Hogan, Z. S. & Zanden, M. J. V. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Glob. Ecol. Biogeogr. 16, 694–701 (2007).

    Article 

    Google Scholar
     

  • Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article 

    Google Scholar
     

  • Robinson, J. P. W. et al. Small pelagic fish supply abundant and affordable micronutrients to low- and middle-income countries. Nat. Food 3, 1075–1084 (2022).

    Article 

    Google Scholar
     

  • Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).

    Article 

    Google Scholar
     

  • Garcia, S. M. et al. Reconsidering the consequences of selective fisheries. Science 335, 1045–1047 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Duffy, J. E., Lefcheck, J. S., Stuart-Smith, R. D., Navarrete, S. A. & Edgar, G. J. Biodiversity enhances reef fish biomass and resistance to climate change. Proc. Natl Acad. Sci. USA 113, 6230–6235 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ross, S. R. P.-J., Petchey, O. L., Sasaki, T. & Armitage, D. W. How to measure response diversity. Methods Ecol. Evol. 14, 1150–1167 (2023).

    Article 

    Google Scholar
     

  • Gephart, J. A. et al. Globalization of wild capture and farmed aquatic foods. Nat. Commun. 15, 8026 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fiorella, K. J., Bageant, E. R., Thilsted, S. H. & Heilpern, S. A. Commercially traded fish portfolios mask household utilization of biodiversity in wild food systems. Proc. Natl Acad. Sci. USA 121, e2403691121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V. & Ota, Y. A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 11, e0166681 (2016).

    Article 

    Google Scholar
     

  • Heilpern, S. A. et al. Nutritional challenges of substituting farmed animals for wild fish in human diets. Environ. Res. Lett. 18, 114030 (2023).

    Article 

    Google Scholar
     

  • Ambikapathi, R. et al. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Nat. Food 3, 764–779 (2022).

    Article 

    Google Scholar
     

  • Loken, B., Dhar, M. & Rapando, N. P. Healthy and sustainable diets must be culturally acceptable too. Nat. Food 5, 723–724 (2024).

    Article 

    Google Scholar
     

  • Robinson, J. P. W. et al. Managing fisheries for maximum nutrient yield. Fish Fish. 23, 800–811 (2022).

    Article 

    Google Scholar
     

  • Lynch, A. J. et al. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nat. Sustain. https://doi.org/10.1038/s41893-020-0517-6 (2020).

  • Halpern, B. S. et al. Opinion: putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).

    Article 

    Google Scholar
     

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 

    Google Scholar
     

  • Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 3742 (2018).

    Article 

    Google Scholar
     

  • Schiettekatte, N. M. D. et al. Biological trade-offs underpin coral reef ecosystem functioning. Nat. Ecol. Evol. 6, 701–708 (2022).

    Article 

    Google Scholar
     

  • Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97, 3460–3471 (2016).

    Article 

    Google Scholar
     

  • McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Miranda, R. et al. Monitoring extinction risk and threats of the world’s fishes based on the Sampled Red List Index. Rev. Fish Biol. Fish. 32, 975–991 (2022).

    Article 

    Google Scholar
     

  • Froese, R. & Pauly, D. FishBase version 02/2019 (2019); www.fishbase.org

  • Csárdi, G. & Berkelaar, M. lpSolve: Interface to ‘Lp_solve’ v. 5.5 to Solve Linear/Integer Programs (2024).

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 

    Google Scholar
     

  • Dinno, A. paran: Horn’s Test of Principal Components/Factors (2018).

  • Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar
     

  • R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • Heilpern, S. et al. Data and code for ‘Leveraging biodiversity to maximize nutrition and resilience of global fisheries’. Figshare https://doi.org/10.6084/m9.figshare.24615465 (2025).



  • Source link

    More From Forest Beat

    Biodiversity change under human depopulation in Japan

    Study areaAlongside other countries, over the past 100 years, significant loss of natural and semi-natural habitat has occurred in Japan, mainly because of...
    Biodiversity
    13
    minutes

    Status of endangered large prey predators following civil unrest in a...

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, 1400253 (2015).ADS  ...
    Biodiversity
    8
    minutes

    Ancient fossils show how the last mass extinction forever scrambled the...

    About 66 million years ago – perhaps on a downright unlucky day in May – an asteroid smashed into...
    Biodiversity
    6
    minutes

    Australia’s government is pledging better protection for our vulnerable seas – but...

    Ahead of this week’s crucial United Nations ocean conference, federal Environment Minister Murray Watt promised that by 2030, 30%...
    Biodiversity
    4
    minutes
    spot_imgspot_img