Machine learning-based mapping of Acidobacteriota and Planctomycetota using 16 S rRNA gene metabarcoding data across soils in Russia


  • Jiao, S., Xu, Y., Zhang, J., Hao, X. & Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 4(4), 00313–18 (2019).


    Google Scholar
     

  • Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Shifts in microbial communities with increasing soil fertility across a chronosequence of paddy cultivation in subtropical China. Appl. Soil Ecol. 120, 153–159 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kalam, S. et al. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Front. Microbiol. 11, 580024 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rusch, A., Huettel, M., Reimers, C. E., Taghon, G. L. & Fuller, C. M. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol. Ecol. 44, 89–100 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norris, T. B., Wraith, J. M., Castenholz, R. W. & McDermott, T. R. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68, 6300–6309 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A. & Thies, J. E. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl. Environ. Microbiol. 72, 4522–4531 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuña-González, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 413–429 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Chang. Biol. 25, 827–838 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yashiro, E. et al. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Sci. Rep. 8, 24253 (2018).

    Article 

    Google Scholar
     

  • Seppey, C. V. W. et al. Landscape structure is a key driver of soil protist diversity in meadows in the Swiss Alps. Landsc. Ecol. 38, 949–965 (2023).

    Article 

    Google Scholar
     

  • Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubey, A. et al. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers. Conserv. 28, 2405–2429 (2019).

    Article 

    Google Scholar
     

  • Ray, P., Lakshmanan, V., Labbé, J. L. & Craven, K. D. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front. Microbiol. 11, 622926 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mocali, S. & Benedetti, A. Exploring research frontiers in microbiology: The challenge of metagenomics in soil microbiology. Res. Microbiol. 161, 497–505 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Garg, D., Patel, N., Rawat, A. & Rosado, A. S. Cutting edge tools in the field of soil microbiology. Curr. Res. Microb. Sci. 6, 100226. https://doi.org/10.1016/j.crmicr.2024.100226 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, C. W., Pearce, D. A., Convey, P., Yew, W. C. & Tan, I. K. P. Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma 181–182, 45–55 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bickel, S., Chen, X., Papritz, A. & Or, D. A hierarchy of environmental covariates control the global biogeography of soil bacterial richness. Sci. Rep. 9, 48571 (2019).

    Article 

    Google Scholar
     

  • Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J. 15, 2547–2560 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieira, A. F., Moura, M. & Silva, L. Soil metagenomics in grasslands and forests—A review and bibliometric analysis. Appl. Soil Ecol. 167, 104047 (2021).

    Article 

    Google Scholar
     

  • Abakumov, E., Zverev, A., Suleymanov, A. & Suleymanov, R. Microbiome of post-technogenic soils of quarries in the Republic of Bashkortostan (Russia). Open Agric. 5, 529–538 (2020).

    Article 

    Google Scholar
     

  • Silverstein, M. R., Segrè, D. & Bhatnagar, J. M. Environmental microbiome engineering for the mitigation of climate change. Glob. Chang. Biol. 29, 2050–2066 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karimi, B. et al. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, eaao6578 (2018).

    Article 

    Google Scholar
     

  • Karimi, B. et al. Biogeography of soil microbial habitats across France. Glob. Ecol. Biogeogr. 29, 1399–1411 (2020).

    Article 

    Google Scholar
     

  • Lu, T. et al. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecol. Lett. 5, 172–178 (2023).

    Article 

    Google Scholar
     

  • Malard, L. A., Anwar, M. Z., Jacobsen, C. S. & Pearce, D. A. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol. Ecol. 95, fiz128 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djemiel, C. et al. Biogeographical patterns of the soil fungal:bacterial ratio across France. mSphere 8, 00365–23 (2023).

    Article 

    Google Scholar
     

  • Siewert, C. et al. Teaching soil science and ecology in West Siberia: 17 years of field courses. Environ. Educ. Res. 20, 858–876 (2014).

    Article 

    Google Scholar
     

  • Pershina, E. V. et al. Investigation of the core microbiome in main soil types from the East European plain. Sci. Total Environ. 631–632, 1421–1430 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Suleymanov, A., Abakumov, E., Alekseev, I. & Nizamutdinov, T. Digital mapping of soil properties in the high latitudes of Russia using sparse data. Geoderma Reg. 36, e00776 (2024).

    Article 

    Google Scholar
     

  • Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C. & Knight, R. Human-associated microbial signatures: Examining their predictive value. Cell Host Microbe 10, 292–296. https://doi.org/10.1016/j.chom.2011.09.003 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jha, S. K. & Ahmad, Z. Soil microbial dynamics prediction using machine learning regression methods. Comput. Electron. Agric. 147, 158–165 (2018).

    Article 

    Google Scholar
     

  • Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil. Biol. Biochem. 164, 108472 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Tuanmu, M. N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).

    Article 

    Google Scholar
     

  • ESA WorldCover Consortium. ESA WorldCover 10 m 2020 v100. (2021).

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Pelletier, J. D. et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, 41–65 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 27, 659–678 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).

    Article 

    Google Scholar
     

  • Shapley, L. S. in Contributions to the Theory of Games (AM-28), Volume II, 307–318 (Princeton University Press, 2016).

  • Wadoux, A. M. J. C. & Molnar, C. Beyond prediction: methods for interpreting complex models of soil variation. Geoderma 422, 115953 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M. & Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, e5518 (2018).

    Article 

    Google Scholar
     

  • Milà, C., Mateu, J., Pebesma, E. & Meyer, H. Nearest neighbour distance matching leave-one-out cross-validation for map validation. Methods Ecol. Evol. 13, 1304–1316 (2022).

    Article 

    Google Scholar
     

  • Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2020).

    Article 

    Google Scholar
     

  • Wright, M. N. & Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

    Article 

    Google Scholar
     

  • Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichorst, S. A. et al. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 20, 1041–1063 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu Rev Microbiol 71, 711–30 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front Microbiol 7, 744 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Žížala, D. et al. High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. Catena (Amst) 212, 106024 (2022).

    Article 

    Google Scholar
     

  • Suleymanov, A. et al. National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France. Geoderma Reg. 37, e00795 (2024).


    Google Scholar
     

  • Lilburne, L., Helfenstein, A., Heuvelink, G. B. M. & Eger, A. Interpreting and evaluating digital soil mapping prediction uncertainty: A case study using texture from SoilGrids. Geoderma 450, 117052 (2024).

    Article 

    Google Scholar
     

  • Hausmann, B. et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J. 12, 1729–1742 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaves, M. G. et al. Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01680 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soliman, T., Yang, S. Y., Yamazaki, T. & Jenke-Kodama, H. Profiling soil microbial communities with next-generation sequencing: The influence of DNA kit selection and technician technical expertise. PeerJ 2017, e3278 (2017).


    Google Scholar
     

  • Bollmann-Giolai, A. et al. A low-cost pipeline for soil microbiome profiling. Microbiologyopen 9, e823 (2020).

    Article 

    Google Scholar
     

  • Kumaishi, K. et al. High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling. Sci. Rep. 12, 13705 (2022).

    Article 

    Google Scholar
     

  • White, R. A. III. et al. Moleculo long-read sequencing facilitates assembly and genomic binning from complex soil metagenomes. mSystems 1, 00045–16 (2016).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Prokaryotic taxonomy and functional diversity assessment of different sequencing platform in a hyper-arid Gobi soil in Xinjiang Turpan Basin, China. Front. Microbiol. 14, 1211915 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vieira, C. K., dos Borges, L. G. A., Marconatto, L., Giongo, A. & Stürmer, S. L. Microbiome of a revegetated iron-mining site and pristine ecosystems from the Brazilian Cerrado. Appl. Soil. Ecol. 131, 55–65 (2018).

    Article 

    Google Scholar
     

  • Su, D. F. et al. Comparison of the bulk and rhizosphere soil prokaryotic communities between wild and reintroduced manglietiastrum sinicum plants, a threatened species with extremely small populations. Curr. Microbiol. 78, 3877–3890 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, R. Q. et al. Response of bacterial community structure to different ecological niches and their functions in Korean pine forests. PeerJ 10, e13656 (2022).

    Article 

    Google Scholar
     

  • Vargas, L. K. et al. Soil fertility level is the main modulator of prokaryotic communities in a meta-analysis of 197 soil samples from the Americas and Europe. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2023.104811 (2023).

    Article 

    Google Scholar
     

  • Rusch, A., Huettel, M., Reimers, C. E., Taghon, G. L. & Fuller, C. M. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol. Ecol. 44, 89–100 (2006).

    Article 

    Google Scholar
     

  • He, B. et al. Assessing the impact of data preprocessing on analyzing next generation sequencing data. Front. Bioeng. Biotechnol. 8, 817 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pekár, S. & Brabec, M. Modern analysis of biological data: Generalized linear models in R (Masaryk University Press, 2016).


    Google Scholar
     

  • Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Standardized diversity estimation uncovers global distribution patterns and drivers of stream...

    Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).Article  ...
    Biodiversity
    11
    minutes

    Species loss in key habitats accelerates regional food web disruption

    Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).Article  ...
    Biodiversity
    14
    minutes

    Biodiversity and human well-being trade-offs and synergies in villages

    Hanspach, J., Loos, J., Dorresteijn, I., Abson, D. J. & Fischer, J. Characterizing social–ecological units to inform biodiversity conservation in cultural landscapes. Divers....
    Biodiversity
    9
    minutes

    Biodiversity modeling to manage urban ecosystems for people and nature

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).Article  ...
    Biodiversity
    10
    minutes
    spot_imgspot_img