Jiao, S., Xu, Y., Zhang, J., Hao, X. & Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 4(4), 00313–18 (2019).
Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).
Jiang, Y. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).
Li, W. et al. Shifts in microbial communities with increasing soil fertility across a chronosequence of paddy cultivation in subtropical China. Appl. Soil Ecol. 120, 153–159 (2017).
Kalam, S. et al. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Front. Microbiol. 11, 580024 (2020).
Rusch, A., Huettel, M., Reimers, C. E., Taghon, G. L. & Fuller, C. M. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol. Ecol. 44, 89–100 (2003).
Norris, T. B., Wraith, J. M., Castenholz, R. W. & McDermott, T. R. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68, 6300–6309 (2002).
Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A. & Thies, J. E. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl. Environ. Microbiol. 72, 4522–4531 (2006).
Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuña-González, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).
Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: Novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 413–429 (2001).
Nottingham, A. T., Bååth, E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Chang. Biol. 25, 827–838 (2019).
Yashiro, E. et al. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Sci. Rep. 8, 24253 (2018).
Seppey, C. V. W. et al. Landscape structure is a key driver of soil protist diversity in meadows in the Swiss Alps. Landsc. Ecol. 38, 949–965 (2023).
Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
Dubey, A. et al. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers. Conserv. 28, 2405–2429 (2019).
Ray, P., Lakshmanan, V., Labbé, J. L. & Craven, K. D. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front. Microbiol. 11, 622926 (2020).
Mocali, S. & Benedetti, A. Exploring research frontiers in microbiology: The challenge of metagenomics in soil microbiology. Res. Microbiol. 161, 497–505 (2010).
Garg, D., Patel, N., Rawat, A. & Rosado, A. S. Cutting edge tools in the field of soil microbiology. Curr. Res. Microb. Sci. 6, 100226. https://doi.org/10.1016/j.crmicr.2024.100226 (2024).
Chong, C. W., Pearce, D. A., Convey, P., Yew, W. C. & Tan, I. K. P. Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma 181–182, 45–55 (2012).
Bickel, S., Chen, X., Papritz, A. & Or, D. A hierarchy of environmental covariates control the global biogeography of soil bacterial richness. Sci. Rep. 9, 48571 (2019).
Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J. 15, 2547–2560 (2021).
Vieira, A. F., Moura, M. & Silva, L. Soil metagenomics in grasslands and forests—A review and bibliometric analysis. Appl. Soil Ecol. 167, 104047 (2021).
Abakumov, E., Zverev, A., Suleymanov, A. & Suleymanov, R. Microbiome of post-technogenic soils of quarries in the Republic of Bashkortostan (Russia). Open Agric. 5, 529–538 (2020).
Silverstein, M. R., Segrè, D. & Bhatnagar, J. M. Environmental microbiome engineering for the mitigation of climate change. Glob. Chang. Biol. 29, 2050–2066 (2023).
Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).
Karimi, B. et al. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, eaao6578 (2018).
Karimi, B. et al. Biogeography of soil microbial habitats across France. Glob. Ecol. Biogeogr. 29, 1399–1411 (2020).
Lu, T. et al. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecol. Lett. 5, 172–178 (2023).
Malard, L. A., Anwar, M. Z., Jacobsen, C. S. & Pearce, D. A. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol. Ecol. 95, fiz128 (2019).
Djemiel, C. et al. Biogeographical patterns of the soil fungal:bacterial ratio across France. mSphere 8, 00365–23 (2023).
Siewert, C. et al. Teaching soil science and ecology in West Siberia: 17 years of field courses. Environ. Educ. Res. 20, 858–876 (2014).
Pershina, E. V. et al. Investigation of the core microbiome in main soil types from the East European plain. Sci. Total Environ. 631–632, 1421–1430 (2018).
Suleymanov, A., Abakumov, E., Alekseev, I. & Nizamutdinov, T. Digital mapping of soil properties in the high latitudes of Russia using sparse data. Geoderma Reg. 36, e00776 (2024).
Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C. & Knight, R. Human-associated microbial signatures: Examining their predictive value. Cell Host Microbe 10, 292–296. https://doi.org/10.1016/j.chom.2011.09.003 (2011).
Jha, S. K. & Ahmad, Z. Soil microbial dynamics prediction using machine learning regression methods. Comput. Electron. Agric. 147, 158–165 (2018).
Wilhelm, R. C., van Es, H. M. & Buckley, D. H. Predicting measures of soil health using the microbiome and supervised machine learning. Soil. Biol. Biochem. 164, 108472 (2022).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
Tuanmu, M. N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).
ESA WorldCover Consortium. ESA WorldCover 10 m 2020 v100. (2021).
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).
Pelletier, J. D. et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, 41–65 (2016).
Gregorutti, B., Michel, B. & Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 27, 659–678 (2017).
Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).
Shapley, L. S. in Contributions to the Theory of Games (AM-28), Volume II, 307–318 (Princeton University Press, 2016).
Wadoux, A. M. J. C. & Molnar, C. Beyond prediction: methods for interpreting complex models of soil variation. Geoderma 422, 115953 (2022).
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M. & Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, e5518 (2018).
Milà, C., Mateu, J., Pebesma, E. & Meyer, H. Nearest neighbour distance matching leave-one-out cross-validation for map validation. Methods Ecol. Evol. 13, 1304–1316 (2022).
Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2020).
Wright, M. N. & Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87 (2017).
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).
Eichorst, S. A. et al. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 20, 1041–1063 (2018).
Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu Rev Microbiol 71, 711–30 (2017).
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front Microbiol 7, 744 (2016).
Žížala, D. et al. High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. Catena (Amst) 212, 106024 (2022).
Suleymanov, A. et al. National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France. Geoderma Reg. 37, e00795 (2024).
Lilburne, L., Helfenstein, A., Heuvelink, G. B. M. & Eger, A. Interpreting and evaluating digital soil mapping prediction uncertainty: A case study using texture from SoilGrids. Geoderma 450, 117052 (2024).
Hausmann, B. et al. Peatland Acidobacteria with a dissimilatory sulfur metabolism. ISME J. 12, 1729–1742 (2018).
Chaves, M. G. et al. Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01680 (2019).
Soliman, T., Yang, S. Y., Yamazaki, T. & Jenke-Kodama, H. Profiling soil microbial communities with next-generation sequencing: The influence of DNA kit selection and technician technical expertise. PeerJ 2017, e3278 (2017).
Bollmann-Giolai, A. et al. A low-cost pipeline for soil microbiome profiling. Microbiologyopen 9, e823 (2020).
Kumaishi, K. et al. High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling. Sci. Rep. 12, 13705 (2022).
White, R. A. III. et al. Moleculo long-read sequencing facilitates assembly and genomic binning from complex soil metagenomes. mSystems 1, 00045–16 (2016).
Zhang, Z. et al. Prokaryotic taxonomy and functional diversity assessment of different sequencing platform in a hyper-arid Gobi soil in Xinjiang Turpan Basin, China. Front. Microbiol. 14, 1211915 (2023).
Vieira, C. K., dos Borges, L. G. A., Marconatto, L., Giongo, A. & Stürmer, S. L. Microbiome of a revegetated iron-mining site and pristine ecosystems from the Brazilian Cerrado. Appl. Soil. Ecol. 131, 55–65 (2018).
Su, D. F. et al. Comparison of the bulk and rhizosphere soil prokaryotic communities between wild and reintroduced manglietiastrum sinicum plants, a threatened species with extremely small populations. Curr. Microbiol. 78, 3877–3890 (2021).
Ji, R. Q. et al. Response of bacterial community structure to different ecological niches and their functions in Korean pine forests. PeerJ 10, e13656 (2022).
Vargas, L. K. et al. Soil fertility level is the main modulator of prokaryotic communities in a meta-analysis of 197 soil samples from the Americas and Europe. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2023.104811 (2023).
Rusch, A., Huettel, M., Reimers, C. E., Taghon, G. L. & Fuller, C. M. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol. Ecol. 44, 89–100 (2006).
He, B. et al. Assessing the impact of data preprocessing on analyzing next generation sequencing data. Front. Bioeng. Biotechnol. 8, 817 (2020).
Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).
Pekár, S. & Brabec, M. Modern analysis of biological data: Generalized linear models in R (Masaryk University Press, 2016).
Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).