Sutherland, W. J. et al. Identification of 100 fundamental ecological questions. J. Ecol. 101, 58–67 (2013).
Geisen, S. et al. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol. Biochem. 111, 94–103 (2017).
Azeem Jadoon, W., Nakai, R. & Naganuma, T. Biogeographical note on Antarctic microflorae: Endemism and cosmopolitanism. Geosci. Front. 4, 633–646 (2013).
Geisen, S. et al. Soil protists: A fertile frontier in soil biology research. FEMS Microbiol. Rev. 42, 293–323 (2018).
Eme, L. & Tamarit, D. Microbial diversity and open questions about the deep tree of life. Genome Biol. Evol. 16, evae053 (2024).
Xu, X. et al. Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecol. Biogeogr. 29, 1870–1886 (2020).
Dickey, J. R. et al. The utility of macroecological rules for microbial biogeography. Front. Ecol. Evol. 9, 633155 (2021).
Bruni, E. P. et al. Global distribution modelling of a conspicuous Gondwanian soil protist reveals latitudinal dispersal limitation and range contraction in response to climate warming. Divers. Distrib. 30, e13779 (2024).
Barberán, A. The microbial contribution to macroecology. Front. Microbiol https://doi.org/10.3389/fmicb.2014.00203 (2014).
Schiaffino, M. R. et al. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ. Microbiol. 18, 5249–5264 (2016).
Fernández, L. D., Hernández, C. E., Schiaffino, M. R., Izaguirre, I. & Lara, E. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix125 (2017).
Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).
Fenchel, T. Biogeography for bacteria. Science 301, 925–926 (2003).
Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol 4, 102–112 (2006).
Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).
Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).
McClain, C. R. & Schlacher, T. A. On some hypotheses of diversity of animal life at great depths on the sea floor. Mar. Ecol. 36, 849–872 (2015).
Cruz-Motta, J. J. et al. Latitudinal patterns of species diversity on South American rocky shores: Local processes lead to contrasting trends in regional and local species diversity. J. Biogeogr. 47, 1966–1979 (2020).
Huggett, R. J. Fundamentals of Biogeography (Routledge, 2004).
Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).
Bridle, J. & Hoffmann, A. Understanding the biology of species’ ranges: When and how does evolution change the rules of ecological engagement?. Phil. Trans. R. Soc. B 377, 20210027 (2022).
Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 65, 514 (1992).
Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
Davies, T. J., Savolainen, V., Chase, M. W., Moat, J. & Barraclough, T. G. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. Lond. B 271, 2195–2200 (2004).
Evans, K. L., Warren, P. H. & Gaston, K. J. Species–energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. 80, 1–25 (2005).
Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).
Hurlbert, A. H. & Stegen, J. C. On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions. Front. Genet https://doi.org/10.3389/fgene.2014.00420 (2014).
Rabosky, D. L., Title, P. O. & Huang, H. Minimal effects of latitude on present-day speciation rates in New World birds. Proc. R. Soc. B. 282, 20142889 (2015).
Fernández, L. D. et al. Water–energy balance, past ecological perturbations and evolutionary constraints shape the latitudinal diversity gradient of soil testate amoebae in south-western South America. Global Ecol. Biogeogr. 25, 1216–1227 (2016).
Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).
Regionalización biogeográfica en Iberoamérica y tópicos afines: primeras jornadas biogeográficas de la Red Iberoamericana de biogeografia y entomología sistemática (RIBES XII.I-CYTED). (Fac. des Ciencias, UNAM [u.a.], México, 2005).
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
Li, F., Shao, L. & Li, S. Tropical niche conservatism explains the eocene migration from india to Southeast Asia in ochyroceratid spiders. Syst. Biol. 69, 987–998 (2020).
Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).
Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).
Wright, D. H., Patterson, B. D., Mikkelson, G. M., Cutler, A. & Atmar, W. A comparative analysis of nested subset patterns of species composition. Oecologia 113, 1–20 (1997).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Beijerinck, M. W. De infusies en de ontdekking der backteriën. In Jaarboek van de Koninklijke Akademie van Wetenschappen (Müller, Amsterdam, 1913)
Baas Becking, L. B. Geobiologie of Inleiding Tot de Milieukunde (in Dutch) (WP Van Stockum & Zoon, 1934).
Holman, L. E. et al. Animals, protists and bacteria share marine biogeographic patterns. Nat. Ecol. Evol. 5, 738–746 (2021).
Caracciolo, M. et al. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol. Ecol. 31, 3761–3783 (2022).
Cabrerizo, M. J., Medina-Sánchez, J. M., González-Olalla, J. M., Sánchez-Gómez, D. & Carrillo, P. Microbial plankton responses to multiple environmental drivers in marine ecosystems with different phosphorus limitation degrees. Sci. Total Environ. 816, 151491 (2022).
Haraguchi, L., Jakobsen, H. H., Lundholm, N. & Carstensen, J. Phytoplankton community dynamic: A driver for ciliate trophic strategies. Front. Mar. Sci. 5, 272 (2018).
Fernández, L. D. et al. Niche conservatism drives the elevational diversity gradient in major groups of free-living soil unicellular eukaryotes. Microb. Ecol. 83, 459–469 (2022).
Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).
Chen, W., Pan, Y., Yu, L., Yang, J. & Zhang, W. Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, Southeast China. Front. Microbiol. 8, 1912 (2017).
Papke, R. T. & Ward, D. M. The importance of physical isolation to microbial diversification. FEMS Microbiol. Ecol. 48, 293–303 (2004).
Vincent, W. F. Evolutionary origins of Antarctic microbiota: Invasion, selection and endemism. Antart. Sci. 12, 374–385 (2000).
Danovaro, R. Understanding marine biodiversity patterns and drivers: The fall of Icarus. Mar. Ecol. 5, e12814. https://doi.org/10.1111/maec.12814 (2024).
Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).
Fiedler, P. C., Philbrick, V. & Chavez, F. P. Oceanic upwelling and productivity in the eastern tropical Pacific. Limnol. Oceanogr. 36, 1834–1850 (1991).
Daneri, G. et al. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser. 197, 41–49 (2000).
Thiel, M. et al. The humboldt current system of northern and central Chile: Oceanographic processes, ecological interactions and socioeconomic feedback. In Oceanography and Marine Biology Vol. 20074975 (eds Gibson, R. et al.) 195–344 (CRC Press, 2007).
Hidalgo, P. & Escribano, R. Coupling of life cycles of the copepods Calanus chilensis and Centropages brachiatus to upwelling induced variability in the central-southern region of Chile. Prog. Oceanogr. 75, 501–517 (2007).
Escribano, R., Hidalgo, P., Fuentes, M. & Donoso, K. Zooplankton time series in the coastal zone off Chile: Variation in upwelling and responses of the copepod community. Prog. Oceanogr. 97–100, 174–186 (2012).
Escribano, R. & Schneider, W. The structure and functioning of the coastal upwelling system off central/southern Chile. Prog. Oceanogr. 75, 343–347 (2007).
Strub, P. T., James, C., Montecino, V., Rutllant, J. A. & Blanco, J. L. Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Prog. Oceanogr. 172, 159–198 (2019).
Kämpf, J. & Chapman, P. Seasonal wind-driven coastal upwelling systems. In Upwelling Systems of the World 315–361 (Springer International Publishing, 2016).
Iriarte, J. L., González, H. E. & Nahuelhual, L. Patagonian fjord ecosystems in southern Chile as a highly vulnerable region: Problems and needs. Ambio 39, 463–466 (2010).
Corredor-Acosta, A. et al. Spatio-temporal variability of chlorophyll-A and environmental variables in the panama bight. Remote Sens. 12, 2150 (2020).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 1, 3–14 (2010).
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).
Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L. & Ferrier, S. Which environmental variables should I use in my biodiversity model?. Int. J. Geogr. Inf. Sci. 26, 2009–2047 (2012).
Jeng, C. C. Why a variance inflation factor of 10 is not an ideal cutoff for multicollinearity diagnostics. J. Educ. Stud. 57, 067–092 (2023).
Van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207 (2003).
Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
Melo, A. S., Cianciaruso, M. V. & Almeida-Neto, M. tree NODF: Nestedness to phylogenetic, functional and other tree-based diversity metrics. Methods Ecol. Evol. 5, 563–572 (2014).
Swingland, I. R. Biodiversity, Definition of. In Encyclopedia of Biodiversity 399–410 (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-384719-5.00009-5.
Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecol. Biogeogr. 27, 760–786 (2018).
Rue, H., Martino, S. & Chopin, N. Approximate Bayesian Inference for Latent Gaussian models by using Integrated Nested Laplace Approximations. J. R. Stat. Soc. Ser. B Stat Methodol. 71, 319–392 (2009).
Lindgren, F., Rue, H. & Lindström, J. An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat Methodol. 73, 423–498 (2011).
Lindgren, F. & Rue, H. Bayesian spatial modelling with R—INLA. J. Stat. Soft. https://doi.org/10.18637/jss.v063.i19 (2015).
Poggio, L., Gimona, A., Spezia, L. & Brewer, M. J. Bayesian spatial modelling of soil properties and their uncertainty: The example of soil organic matter in Scotland using R-INLA. Geoderma 277, 69–82 (2016).
Muñoz, F., Pennino, M. G., Conesa, D., López-Quílez, A. & Bellido, J. M. Estimation and prediction of the spatial occurrence of fish species using Bayesian latent Gaussian models. Stoch. Environ. Res. Risk Assess 27, 1171–1180 (2013).
Dell’Apa, A., Maria Grazia, P. & Bonzek, C. Modeling the habitat distribution of spiny dogfish (Squalus acanthias), by sex, in coastal waters of the northeastern United States. Fish. Bull. 115, 89–100 (2016).
Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat Comput 24, 997–1016 (2014).
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In 14th International Joint Conference on Artificial Intelligence (IJCAI), vol. 2, 1137–1143 (1995).
Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Pennino, M. G., Muñoz, F., Conesa, D., López-Quίlez, A. & Bellido, J. M. Modeling sensitive elasmobranch habitats. J. Sea Res. 83, 209–218 (2013).
Lezama-Ochoa, N. et al. Biodiversity and habitat characteristics of the bycatch assemblages in fish aggregating devices (FADs) and school sets in the Eastern Pacific Ocean. Front. Mar. Sci. 4, 265 (2017).
Escalle, L. et al. Environmental factors and megafauna spatio-temporal co-occurrence with purse-seine fisheries. Fish. Oceanogr. 25, 433–447 (2016).
Goldenberg, S. U. et al. Nutrient composition (Si:N) as driver of plankton communities during artificial upwelling. Front. Mar. Sci. 9, 1015188 (2022).
Baumann, M. et al. Counteracting effects of nutrient composition (Si:N) on export flux under artificial upwelling. Front. Mar. Sci. 10, 1181351 (2023).
Bode, A., Alvarez-Ossorio, M. T., Cabanas, J. M., Miranda, A. & Varela, M. Recent trends in plankton and upwelling intensity off Galicia (NW Spain). Prog. Oceanogr. 83, 342–350 (2009).
Gonzalez-Nuevo, G., Gago, J. & Cabanas, J. M. Upwelling index: a powerful tool for marine research in the NW Iberian upwelling system. J Op. Oceanogr. 7, 47–57 (2014).
Guo, X., Wu, L. & Huang, L. Spatiotemporal patterns in diversity and assembly process of marine protist communities of the Changjiang (Yangtze river) plume and its adjacent waters. Front. Microbiol. 11, 579290 (2020).
Balzano, S., Abs, E. & Leterme, S. Protist diversity along a salinity gradient in a coastal lagoon. Aquat. Microb. Ecol. 74, 263–277 (2015).
Li, S. et al. Ecological and evolutionary processes involved in shaping microbial habitat generalists and specialists in urban park ecosystems. Msystems 9, e00469-e524 (2024).
Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015).
Freilich, M. A. et al. 3D intrusions transport active surface microbial assemblages to the dark ocean. Proc. Natl. Acad. Sci. U.S.A. 121, e2319937121 (2024).
Moreles, E., Romero, E., Ramos-Musalem, K. & Tenorio-Fernandez, L. The global ocean mixed layer depth derived from an energy approach. EGUsphere https://doi.org/10.5194/egusphere-2024-4079 (2025).
Gill, A. E. Atmosphere-Ocean Dynamics (Academic Press, 1982).
Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10, e1001292 (2012).
Coogan, J., Dzwonkowski, B. & Lehrter, J. Effects of coastal upwelling and downwelling on hydrographic variability and dissolved oxygen in mobile bay. JGR Oceans 124, 791–806 (2019).
Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).
Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
Rivadeneira, M. M., Thiel, M., González, E. R. & Haye, P. A. An inverse latitudinal gradient of diversity of peracarid crustaceans along the Pacific Coast of South America: Out of the deep south: An inverse gradient of latitudinal diversity. Glob. Ecol. Biogeogr. 20, 437–448 (2011).
Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).
Mattheeussen, R. et al. Habitat selection of aquatic testate amoebae communities on Qeqertarsuaq (Disko Island), West Greenland. Acta Protozool 44(3), 253 (2005).
Sigala Regalado, I., Lozano García, S., Pérez Alvarado, L., Caballero, M. & Lugo Vázquez, A. Ecological drivers of testate amoeba diversity in tropical water bodies of central Mexico. J. Limnol. https://doi.org/10.4081/jlimnol.2018.1699 (2018).
Brandhorst, W. Condiciones oceanográficas estivales frente a la costa de Chile. Rev. Biol. Mar. 14, 45–84 (1971).
Fonseca, T. & Farías, M. Estudio del proceso de surgencia en la costa chilena utilizando percepción remota. Investigaciones Pesqueras 34, 33–46 (1987).
Strub, P. T., Mesias, J. M., Montecino, V., Ruttlant, J. & Salinas, S. Coastal ocean circulation off Western South America. In The Global Coastal Ocean, Regional Studies and Syntheses. 273–315 (Wiley, 1998).
Mohtadi, M., Hebbeln, D. & Marchant, M. Upwelling and productivity along the Peru-Chile Current derived from faunal and isotopic compositions of planktic foraminifera in surface sediments. Mar. Geol. 216, 107–126 (2005).
Hansen, A., Ohde, T. & Wasmund, N. Succession of micro- and nanoplankton groups in ageing upwelled waters off Namibia. J. Mar. Syst. 140, 130–137 (2014).
Bohata, K. Microzooplankton of the northern Benguela upwelling system (Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky, 2015).
Brattström, H. & Johanssen, A. Ecological and regional zoogeography of the marine benthic fauna of Chile: Report no. 49 of the Lund University Chile Expedition 1948–49. Sarsia 68, 289–339 (1983).
Camus, P. A. Biogeografía marina de Chile continental. Rev. Chil. Hist. Nat. https://doi.org/10.4067/S0716-078X2001000300008 (2001).
Saeedi, H., Dennis, T. E. & Costello, M. J. Bimodal latitudinal species richness and high endemicity of razor clams (Mollusca). J. Biogeogr. 44, 592–604 (2017).
Rivadeneira, M. M. & Poore, G. C. B. Latitudinal gradient of diversity of marine crustaceans: TOWARDS a synthesis. In Evolution and Biogeography (eds Thiel, M. & Poore, G.) 389–412 (Oxford University Press, 2020). https://doi.org/10.1093/oso/9780190637842.003.0015.
Rivera, R., Escribano, R., González, C. E. & Pérez-Aragón, M. Latitudinal diversity of planktonic copepods in the Eastern Pacific: Overcoming sampling biases and predicting patterns. Front. Ecol. Evol. 12, 1305916 (2024).
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II 56, 1083–1094 (2009).
Fernández-Álamo, M. A. & Färber-Lorda, J. Zooplankton and the oceanography of the eastern tropical Pacific: A review. Prog. Oceanogr. 69, 318–359 (2006).
Hidalgo, P., Escribano, R. & Morales, C. E. Ontogenetic vertical distribution and diel migration of the copepod Eucalanus inermis in the oxygen minimum zone off northern Chile (20–21° S). J. Plankton Res. 27, 519–529 (2005).
Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U.S.A. 105, 7774–7778 (2008).
Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).
Hernández-León, S. et al. Large deep-sea zooplankton biomass mirrors primary production in the global ocean. Nat. Commun. 11, 6048 (2020).
Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Resource supply alone explains the variability of marine phytoplankton size structure. Limnol. Oceanogr. 60, 1848–1854 (2015).
Gong, F. et al. Spatial shifts in size structure, phylogenetic diversity, community composition and abundance of small eukaryotic plankton in a coastal upwelling area of the northern South China Sea. J. Plankton Res. 42(6), 650–667 (2020).
James, C. C. et al. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. Nat. Commun. 13, 2448 (2022).
McManus, G. & Peterson, W. Bacterioplankton production in the nearshore zone during upwelling off central Chile. Mar. Ecol. Prog. Ser. 43, 11–17 (1988).
Vargas, C., Contreras, P. & Iriarte, J. Relative importance of phototrophic, heterotrophic, and mixotrophic nanoflagellates in the microbial food web of a river-influenced coastal upwelling area. Aquat. Microb. Ecol. 65, 233–248 (2012).
Figueiras, F. G., Arbones, B., Castro, C. G., Froján, M. & Teixeira, I. G. About pigmented nanoflagellates and the importance of mixotrophy in a coastal upwelling system. Front. Mar. Sci. 7, 144 (2020).
Hou, L. et al. Effects of mixed layer depth on phytoplankton biomass in a tropical marginal ocean: A multiple timescale analysis. Earth’s Future 10, e2020EF001842 (2022).
Diaz, B. P. et al. Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nat Commun 12, 6634 (2021).
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
Charrieau, L. M. et al. Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance. Biogeosciences 16, 3835–3852 (2019).
Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA= 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).
Moreno, R. A., Rivadeneira, M. M., Hernández, C. E., Sampértegui, S. & Rozbaczylo, N. Do Rapoport’s rule, the mid-domain effect or the source–sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America?. Glob. Ecol. Biogeogr. 17, 415–423 (2008).
Baumgartner, M. T. Connectance and nestedness as stabilizing factors in response to pulse disturbances in adaptive antagonistic networks. J. Theor. Biol. 486, 110073 (2020).
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L. & Lange, C. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep Sea Res. Part II 56, 992–1003 (2009).
Espinoza-Morriberón, D. et al. Oxygen variability during ENSO in the tropical south eastern Pacific. Front. Mar. Sci. 5, 526 (2019).
Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).
Finlay, B. J., Corliss, J. O., Esteban, G. & Fenchel, T. Biodiversity at the microbial level: The number of free-living ciliates in the biosphere. Q. Rev. Biol. 71, 221–237 (1996).
Finlay, B. J. & Clarke, K. J. Ubiquitous dispersal of microbial species. Nature 400, 828–828 (1999).
Agatha, S. Global diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in Marine and Brackish Sea Water. PLoS ONE 6, e22466 (2011).
Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17, 407–418 (2008).
Mitchell, E. A. D. & Meisterfeld, R. Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156, 263–267 (2005).
Foissner, W. Dispersal and biogeography of protists: Recent advances. Jpn. J. Protozool. 40(1), 1–16 (2007).
Fondi, M. et al. “Every gene is everywhere but the environment selects”: Global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol Evol 8, 1388–1400 (2016).
Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic Barriers Isolate Endemic
González-Rocha, G. et al. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective. PLoS ONE 12, e0179390 (2017).
Foissner, W. Protist diversity and distribution: Some basic considerations. Biodivers Conserv 17, 235–242 (2008).
Foissner, W. Ubiquity and cosmopolitanism of protists questioned. Soc. Int. Limnol. News. 43, 6–7 (2004).
Foissner, W. Biogeography and dispersal of micro-organisms: A review emphasizing protists. Acta Protozool. 45, 111–136 (2006).
De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).
Fenchel, T. & Finlay, B. J. The ubiquity of small species: Patterns of local and global diversity. Bioscience 54, 777 (2004).
Custer, G. F., Bresciani, L. & Dini-Andreote, F. Ecological and evolutionary implications of microbial dispersal. Front. Microbiol. 13, 855859 (2022).
Foissner, W. Protist Diversity: Estimates of the Near-Imponderable. Protist 150, 363–368 (1999). Populations of Hyperthermophilic Archaea. Science 301, 976–978 (2003).
Pearson, L. A. & Neilan, B. A. Protozoan Diversity and Biogeography. in Encyclopedia of Life Sciences 1–7 (Wiley, 2021).
Okie, J. G. & Storch, D. The equilibrium theory of biodiversity dynamics: a general framework for scaling species richness and community abundance along environmental gradients. Am. Nat. 205, 20–40 (2025).