IPBES. IPBES (2019): Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673 (2019).
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
Cavender-Bares, J., Gamon, J. A. & Townsend, P. A. Remote Sensing of Plant Biodiversity. Remote Sens. Plant Biodivers. https://doi.org/10.1007/978-3-030-33157-3 (2020).
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants https://doi.org/10.1038/NPLANTS.2016.24 (2016).
Xiong, Y. et al. Machine learning-based examination of recent mangrove forest changes in the Western Irrawaddy River Delta, Southeast Asia. Catena (Amst) 234, 107601 (2024).
Hauser, L. T., Binh, N. A., Hoa, P. V., Quan, N. H. & Timmermans, J. Gap-free monitoring of annual mangrove forest dynamics in ca mau province, vietnamese mekong delta, using the landsat-7-8 archives and post-classification temporal optimization. Remote Sens. (Basel) 12, 1–16 (2020).
Zhou, Y., Dai, Z., Liang, X. & Cheng, J. Machine learning-based monitoring of mangrove ecosystem dynamics in the Indus Delta. For. Ecol. Manag. 571, 122231 (2024).
Binh, N. et al. Monitoring mangrove traits through optical Earth observation: Towards spatio-temporal scalability using cloud-based Sentinel-2 continuous time series. ISPRS J. Photogramm. Remote. Sens. 214, 135–152 (2024).
Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).
Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0826-1 (2019).
CBD. Monitoring framework for the Kunming-Montreal Global Biodiversity Framework. Conference Of the Parties to the Convention on Biological Diversity Fifteenth meeting (2022).
Hauser, L. T. Satellite Remote Sensing of Plant Functional Diversity (Leiden University, 2022).
Khare, S., Latifi, H. & Rossi, S. Forest beta-diversity analysis by remote sensing: How scale and sensors affect the Rao’s Q index. Ecol. Indic. 106, 105520 (2019).
Cerrejón, C., Valeria, O. & Fenton, N. J. Estimating lichen α- and β-diversity using satellite data at different spatial resolutions. Ecol. Indic. 149, 110173 (2023).
Rossi, C. et al. Remote sensing of spectral diversity: A new methodological approach to account for spatio-temporal dissimilarities between plant communities. Ecol. Indic. 130, 108106 (2021).
Anderson, C. B. Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. https://doi.org/10.1111/ele.13106 (2018).
Butler, D. Earth observation enters next phase. Nature https://doi.org/10.1038/508160a (2014).
Palmer, M. W., Earls, P. G., Hoagland, B. W., White, P. S. & Wohlgemuth, T. Quantitative tools for perfecting species lists. Environmetrics 13, 121–137 (2002).
Torresani, M. et al. Reviewing the spectral variation hypothesis: Twenty years in the tumultuous sea of biodiversity estimation by remote sensing. Ecol. Inform. 82, 102702 (2024).
Rossi, C. et al. From local to regional: Functional diversity in differently managed alpine grasslands. Remote Sens. Environ. 236, 111415 (2020).
Zheng, Z. et al. Remotely sensed functional diversity and its association with productivity in a subtropical forest. Remote Sens. Environ. 290, 113530 (2023).
Zheng, Z. et al. Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. Remote Sens. Environ. 252, 112170 (2021).
Hauser, L. T. et al. Towards scalable estimation of plant functional diversity from Sentinel-2: In-situ validation in a heterogeneous (semi-)natural landscape. Remote Sens. Environ. 262, 112505 (2021).
Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. https://doi.org/10.1016/j.aquabot.2007.12.007 (2008).
Sunkur, R., Kantamaneni, K., Bokhoree, C. & Ravan, S. Mangroves’ role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: A review. J. Sea Res. 196, 102449 (2023).
Choudhary, B., Dhar, V. & Pawase, A. S. Blue carbon and the role of mangroves in carbon sequestration: Its mechanisms, estimation, human impacts and conservation strategies for economic incentives. J. Sea Res. 199, 102504 (2024).
Hauser, L. T. et al. Uncovering the spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula, Vietnam using multi-temporal SPOT satellite imagery (2004–2013). Appl. Geogr. 86, 197–207 (2017).
Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 113021 (2018).
Wang, D., Qiu, P., Wan, B., Cao, Z. & Zhang, Q. Mapping α- and β-diversity of mangrove forests with multispectral and hyperspectral images. Remote Sens. Environ. 275, 113021 (2022).
Hauser, L. T. et al. Explaining discrepancies between spectral and in-situ plant diversity in multispectral satellite earth observation. Remote Sens. Environ. 265, 112684 (2021).
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Bunting, P. et al. Global mangrove extent change 1996–2020: Global mangrove watch Version 30. Remote Sens. (Basel) 14, 3657 (2022).
Le, Q. T. & Tong, S. S. Monitoring mangrove forest changes in vietnam using cloud-based geospatial analysis and multi-temporal satellite images. Environ. Sci. Eng. 1, 543–560 (2023).
Nguyen, L. T., Hoang, H. T., Ta, H. V. & Park, P. S. Comparison of mangrove stand development on accretion and erosion sites in Ca Mau, Vietnam. Forests https://doi.org/10.3390/f11060615 (2020).
Van, T. T. et al. Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades. Acta Oecol. 63, 71–81 (2015).
Quoc Vo, T., Kuenzer, C. & Oppelt, N. How remote sensing supports mangrove ecosystem service valuation: A case study in Ca Mau province, Vietnam. Ecosyst. Serv. 14, 67–75 (2015).
Truong, T. D. & Do, L. H. Mangrove forests and aquaculture in the Mekong river delta. Land Use Policy 73, 20–28 (2018).
Ha, T. T. P., van Dijk, H. & Visser, L. Impacts of changes in mangrove forest management practices on forest accessibility and livelihood: A case study in mangrove-shrimp farming system in Ca Mau Province, Mekong Delta, Vietnam. Land Use Policy 36, 89–101 (2014).
Lymburner, L., Beggs, P. J. & Jacobson, C. R. Estimation of canopy-average surface-specific leaf area using landsat TM data. Photogrammet. Eng. Remote Sens. 66, 183–192 (2000).
Wilson, E. H. & Sader, S. A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 80, 385–396 (2002).
Daughtry, C. S. T., Walthall, C. L., Kim, M. S., De Colstoun, E. B. & McMurtrey, J. E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 74, 229–239 (2000).
Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. https://doi.org/10.1038/s41467-017-01530-3 (2017).
Durán, S. M. et al. Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Sci. Adv. https://doi.org/10.1126/sciadv.aaw8114 (2019).
Hauser, L. T., Timmermans, J., Soudzilovskaia, N. A. & Van Bodegom, P. M. Linking land use and plant functional diversity patterns in Sabah, Borneo, through large-scale spatially continuous Sentinel-2 inference. Land (Basel) 11, 572 (2022).
Karadimou, E. K., Kallimanis, A. S., Tsiripidis, I. & Dimopoulos, P. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. https://doi.org/10.1038/srep35420 (2016).
Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).
Wang, Z., Rahbek, C. & Fang, J. Effects of geographical extent on the determinants of woody plant diversity. Ecography 35, 1160–1167 (2012).
Rossi, C. et al. Parcel level temporal variance of remotely sensed spectral reflectance predicts plant diversity. Environ. Res. Lett. 19, 074023 (2024).
Ez-zahouani, B. et al. Remote sensing imagery segmentation in object-based analysis: A review of methods, optimization, and quality evaluation over the past 20 years. Remote Sens. Applic. Soc. Environ. https://doi.org/10.1016/j.rsase.2023.101031 (2023).
Yan, L., Roy, D. P., Promkhambut, A., Fox, J. & Zhai, Y. Automated extraction of aquaculture ponds from Sentinel-2 seasonal imagery—A validated case study in central Thailand. Sci. Remote Sens. 6, 100063 (2022).
Thi Huyen, N., Hoang, T. L. & Kim Loi, N. Applying landscape approach in assessing effectiveness of mangrove conservation in Ca Mau Cape National Park, Vietnam. J. Forest Res. 27, 371–378 (2022).
Tran, L. X. & Fischer, A. Spatiotemporal changes and fragmentation of mangroves and its effects on fish diversity in Ca Mau Province (Vietnam). J. Coast Conserv. 21, 355–368 (2017).
Kacic, P. & Kuenzer, C. Forest biodiversity monitoring based on remotely sensed spectral diversity—A review. Remote Sens. https://doi.org/10.3390/rs14215363 (2022).
Bergen, K. M. et al. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2008JG000883 (2009).
Nagendra, H. et al. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 33, 45–59 (2013).
Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. https://doi.org/10.1038/s41467-019-12737-x (2019).
Pacheco-Labrador, J. et al. Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sens. Environ. 280, 113170 (2022).
Alvarez-Vanhard, E., Houet, T., Mony, C., Lecoq, L. & Corpetti, T. Can UAVs fill the gap between in situ surveys and satellites for habitat mapping?. Remote Sens. Environ. 243, 111780 (2020).
Torresani, M. et al. Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data. Ecol. Indic. 117, 106520 (2020).
Younes Cárdenas, N., Joyce, K. E. & Maier, S. W. Monitoring mangrove forests: Are we taking full advantage of technology?. Int. J. Appl. Earth Observ. Geoinformat. 63, 1–14 (2017).
de Almeida, D. R. A. et al. A new era in forest restoration monitoring. Restor. Ecol. 28, 8–11 (2020).
Khare, S., Latifi, H. & Rossi, S. A 15-year spatio-temporal analysis of plant β-diversity using Landsat time series derived Rao’s Q index. Ecol. Indic. 121, 107105 (2021).
Zupanc, A. Improving cloud detection with machine learning. https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (2017).
Skakun, S. et al. Cloud mask intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 274, 112990 (2022).
Son, N. T. et al. Mangrove mapping and change detection in ca mau peninsula, vietnam, using landsat data and object-based image analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 503–510 (2015).
Pham, M. H., Do, T. H., Pham, V. M. & Bui, Q. T. Mangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system. PLoS ONE 15, e0233110 (2020).
Baloloy, A. B., Blanco, A. C., Raymund Rhommel, R. R. C. & Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 166, 95–117 (2020).
Quadros, A. F. & Zimmer, M. Dataset of ‘true mangroves’ plant species traits. Biodivers. Data J. https://doi.org/10.3897/BDJ.5.e22089 (2017).
Weiher, E. et al. Challenging theophrastus: A common core list of plant traits for functional ecology. J. Vegetat. Sci. 10, 609–620 (1999).
Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protocols Food Anal. Chem. https://doi.org/10.1002/0471142913.faf0403s01 (2001).
Asner, G. P. et al. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests. Ecol. Applic. 21, 85–98 (2011).
Damm, A. et al. Remote sensing of plant-water relations: An overview and future perspectives. J. Plant Physiol. 227, 3–19 (2018).
Loureiro, N., Mantuano, D., Manhães, A. & Sansevero, J. Use of the trait-based approach in ecological restoration studies: a global review. Trees Struct. Funct. https://doi.org/10.1007/s00468-023-02439-9 (2023).
Sun, W. et al. Monitoring wetland plant diversity from space: Progress and perspective. Int. J. Appl. Earth Obs. Geoinf. 130, 103943 (2024).
Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).
Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87, 1465–1471 (2006).
Scott, D. W. Multivariate Density Estimation: Theory, Practice, and Visualization 2nd edn. (Wiley, 2015).