Giere, O. & Schratzberger, M. New horizons in meiobenthos research (2023).
Moens, T. et al. Ecology of free-living marine nematodes. in (ed. Schmidt-Rhaesa, A.) 109–152 https://doi.org/10.1515/9783110274257.109 (De Gruyter, 2014).
Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Marine Biodiversity 45, 505–535 (2015).
Martini, S. et al. Functional trait‐based approaches as a common framework for aquatic ecologists. Limnol Oceanogr 66, 965–994 (2021).
Zhang, C., Wright, I. J., Nielsen, U. N., Geisen, S. & Liu, M. Linking nematodes and ecosystem function: a trait-based framework. Trends in Ecology & Evolution (2024).
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annual review of ecology and systematics 33, 125–159 (2002).
Hou, W. et al. Functional traits of soil nematodes define their response to nitrogen fertilization. Functional Ecology 37, 1197–1210 (2023).
T. Bongers, R.G.M. de Goede, G.W. Korthals, G.W. Yeates Proposed changes of c-p classification for nematodes. 3, 61–62 (1995).
Bongers, T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14–19 (1990).
Bongers, T., Alkemade, R. & Yeates, G. W. Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology Progress Series 76, 135–142 (1991).
Bongers, T. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and soil 212, 13–22 (1999).
Cesarz, S. et al. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia 58, 23–32 (2015).
Liu, T., Guo, R., Ran, W., Whalen, J. K. & Li, H. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biology and Biochemistry 88, 275–281 (2015).
Schratzberger, M., Warr, K. & Rogers, S. I. Functional diversity of nematode communities in the southwestern North Sea. Marine Environmental Research 63, 368–389 (2007).
Alves, A. S. et al. Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: The use of nematodes in ecological quality assessment. Ecological Indicators 24, 462–475 (2013).
Jouili, S. et al. Environmental quality assessment of El Bibane lagoon (Tunisia) using taxonomic and functional diversity of meiofauna and nematodes. Journal of the Marine Biological Association of the United Kingdom 97, 1593–1603 (2017).
Ansari, K. G. M. T., Pattnaik, A. K., Rastogi, G. & Bhadury, P. Characterization of benthic habitat settings in a lagoonal ecosystem using free-living nematodes as proxy. Wetlands Ecology and Management 26, 175–194 (2018).
Alves, A. S., Veríssimo, H., Costa, M. J. & Marques, J. C. Taxonomic resolution and Biological Traits Analysis (BTA) approaches in estuarine free-living nematodes. Estuarine, Coastal and Shelf Science 138, 69–78 (2014).
Mitwally, H. M. & Fleeger, J. W. A test of biological trait analysis with nematodes and an anthropogenic stressor. Environmental monitoring and assessment 188, 1–12 (2016).
Citadin, M., Costa, T. M. & Netto, S. A. Response of estuarine meiofauna communities to shifts in spatial distribution of keystone species: An experimental approach. Estuarine, coastal and shelf science 212, 365–371 (2018).
Ghosh, M., Mandal, S. & Chatterjee, M. Impact of unusual monsoonal rainfall in structuring meiobenthic assemblages at Sundarban estuarine system, India. Ecological Indicators 94, 139–150 (2018).
Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F. & Barros, F. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecological Indicators 96, 229–240 (2019).
Cai, L., Fu, S., Zhou, X., Tseng, L. & Hwang, J. Benthic meiofauna with emphasis on nematode assemblage response to environmental variation in the intertidal zone of the Danshuei River estuary, northwest Taiwan. Ecological Research 35, 857–870 (2020).
Losi, V. et al. Changes in taxonomic structure and functional traits of nematodes as tools in the assessment of port impact. Estuarine, Coastal and Shelf Science 260, 107524 (2021).
Ghosh, M. & Mandal, S. Disentangling the Effect of Seasonal Dynamics on Meiobenthic Community Structure From River Matla of Sundarbans Estuarine System, India. Front. Mar. Sci. 8, (2021).
Sroczyńska, K., Chainho, P., Vieira, S. & Adao, H. What makes a better indicator? Taxonomic vs functional response of nematodes to estuarine gradient. Ecological Indicators 121, 107113 (2021).
Nasri, A., Aïssa, P., Beyrem, H. & Mahmoudi, E. New Approach for the Evaluation of Ecological Quality in the Mediterranean Coastal Ecosystems, Case Study of Bizerte Lagoon: Marine Nematodes Functional Traits Assessment. in Nematodes-Recent Advances, Management and New Perspectives (IntechOpen, 2022).
Song, H., Mu, F., Sun, Y. & Hua, E. Variations of Free-Living Marine Nematode’s Taxonomic Structure and Functional Traits in Contrasting Sandy Beach Habitats. Water 14, 3788 (2022).
Hua, E., He, L., Zhang, Z., Cui, C. & Liu, X. Bioassessment of environmental quality based on taxonomic and functional traits of marine nematodes in the Bohai Sea, China. Marine Pollution Bulletin 190, 114884 (2023).
Justino, J. T., Demetrio, G. R., Neres, P. F., Meneses, D. & Pinto, T. K. A functional perspective of nematode assemblages as proxy of quality in tropical estuarine tidal flats. Marine Environmental Research 186, 105922 (2023).
Zullini, A. & Semprucci, F. Morphological differences between free-living soil and freshwater nematodes in relation to their environments. Nematology 22, 125–132 (2020).
Nasri, A. et al. Restructuring of a meiobenthic assemblage after sediment contamination with an antibacterial compound: Case study of ciprofloxacin. Ecotoxicology and Environmental Safety 205, 111084 (2020).
Marzo-Pérez, D., Pérez-García, J. A., Apprill, A. & Armenteros, M. Diversity of Cryptofaunal Nematode Assemblages along the Jardines de La Reina Coral Reef, Southern Cuba. Diversity 16, 264 (2024).
Semprucci, F., Catani, L., Grassi, E., Jakubcsiková, M. & Čerevková, A. Simple, inexpensive, and rapid approach to detect changes in the structure of soil free-living nematodes. Helminthologia 61, 85–98 (2024).
Kalogeropoulou, V., Keklikoglou, K. & Lampadariou, N. Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments. Journal of Sea Research 98, 57–72 (2015).
Hedfi, A. et al. Effects of benzo (a) pyrene on meiobenthic assemblage and biochemical biomarkers in an Oncholaimus campylocercoides (Nematoda) microcosm. Environmental Science and Pollution Research 1–20 (2021).
Allouche, M. et al. What Is the Impact of Dexamethasone and Prednisolone Glucocorticoids on the Structure of Meiobenthic Nematode Communities? Sustainability 14, 5344 (2022).
Ishak, S. et al. The antidepressants amitriptyline and paroxetine induce changes in the structure and functional traits of marine nematodes. Sustainability 14, 6100 (2022).
Ishak, S. et al. Experimental and computational assessment of Antiparkinson Medication effects on meiofauna: Case study of Benserazide and Trihexyphenidyl. Marine Pollution Bulletin 205, 116668 (2024).
Semprucci, F., Grassi, E. & Balsamo, M. Simple Is the Best: An Alternative Method for the Analysis of Free-Living Nematode Assemblage Structure. Water 14, 1114 (2022).
Semprucci, F., Cesaroni, L., Guidi, L. & Balsamo, M. Do the morphological and functional traits of free-living marine nematodes mirror taxonomical diversity? Marine environmental research 135, 114–122 (2018).
Hannachi, A. et al. Diuron environmental levels effects on marine nematodes: Assessment of ecological indices, taxonomic diversity, and functional traits. Chemosphere 287, 132262 (2022).
Baishnab, S. S., Shahir, A., Mandal, S. & Tripathy, S. C. Unveiling the meiobenthic community structure of Prydz Bay, Antarctica during austral summer. Deep Sea Research Part I: Oceanographic Research Papers 199, 104109 (2023).
Armenteros, M., Pérez-García, J. A., Marzo-Pérez, D. & Rodríguez-García, P. The Influential Role of the Habitat on the Diversity Patterns of Free-Living Aquatic Nematode Assemblages in the Cuban Archipelago. Diversity 11, 166 (2019).
Wieser, W. Free-Living Marine Nematodes: General Part. (Gleerup, 1959).
Daché, E. et al. MarNemaFunDiv: a first comprehensive dataset of functional traits for marine nematodes. Zenodo. Scientific Data https://doi.org/10.5281/zenodo.15008265 (2025).
Baldrighi, E. et al. Meiofauna communities’ response to an anthropogenic pressure: The case study of green macroalgal bloom on sandy beach in Brittany. Estuarine, Coastal and Shelf Science 227, 106326 (2019).
Rebecchi, F. et al. First insights into the meiofauna community of a maerl bed in the Bay of Brest (Brittany). scimar 86, e024 (2022).
Baldrighi, E. et al. Meiofaunal communities and nematode diversity characterizing the Secca delle Fumose shallow vent area (Gulf of Naples, Italy). PeerJ 8, e9058 (2020).
Spedicato, A., Sánchez, N., Pastor, L., Menot, L. & Zeppilli, D. Meiofauna Community in Soft Sediments at TAG and Snake Pit Hydrothermal Vent Fields. Front. Mar. Sci. 7, 200 (2020).
Miljutina, M. A., Miljutin, D. M., Mahatma, R. & Galéron, J. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (tropical north-eastern Pacific). Marine Biodiversity 40, 1–15 (2010).
Sanchez, N. et al. A threefold perspective on the role of a pockmark in benthic faunal communities and biodiversity patterns. Deep Sea Research Part I: Oceanographic Research Papers 167, 103425 (2021).
Zeppilli, D., Bongiorni, L., Serrão Santos, R. & Vanreusel, A. Changes in nematode communities in different physiographic sites of the Condor Seamount (North-East Atlantic Ocean) and adjacent sediments. PLoS One 9, e115601 (2014).
Grisse, D. Redescription ou modification de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Mededelingen van de Rijks Faculteit Landbouwwetenschappen Gent 34, 351 (1969).
Platt, H. M. & Warwick, R. M. Freeliving Marine Nematodes. Part 1: British Enoplids. Pictorial Key to World Genera and Notes for the Identification of British Species. (Cambridge University press, for the Linnean Society of London and the …, 1983).
Platt, H. M. & Warwick, R. M. Freeliving marine nematodes: Part II. British Chromadorida. Synopses of the British Fauna No. 38. (1988).
Warwick, R. M., Platt, H. M. & Somerfield, P. J. Monhysterids: pictorial key to world genera and notes for the identification of British species. (1998).
Volume 2 Nematoda. https://doi.org/10.1515/9783110274257 (De Gruyter, 2014).
Leduc, D. Seven new species and one new species record of Sabatieria (Nematoda: Comesomatidae) from the continental slope of New Zealand. Zootaxa 3693, 1–35 (2013).
Bernot, J. et al. World Register of Marine Species (WoRMS). WoRMS Editorial Board (2025).
Nemys eds. Nemys: World Database of Nematodes. https://doi.org/10.14284/366 (2025).
Soetaert, K., Muthumbi, A. & Heip, C. Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Marine Ecology Progress Series 242, 179–193 (2002).
Vanaverbeke, J. et al. Changes in structural and functional diversity of nematode communities during a spring phytoplankton bloom in the southern North Sea. Journal of Sea Research 52, 281–292 (2004).
Soltwedel, T., Pfannkuche, O. & Thiel, H. The Size Structure of Deep-Sea Meiobenthos in the North-Eastern Atlantic: Nematode Size Spectra in Relation to Environmental Variables. Journal of the Marine Biological Association of the United Kingdom 76, 327–344 (1996).
Tita, G., Vincx, M. & Desrosiers, G. Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. Journal of the Marine Biological Association of the United Kingdom 79, 1007–1015 (1999).
Alves, A., Caetano, A., Costa, J. L., Costa, M. J. & Marques, J. Estuarine intertidal meiofauna and nematode communities as indicator of ecosystem’s recovery following mitigation measures. Ecological Indicators 54, 184–196 (2015).
Hu, N. et al. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil. Scientific reports 6, 28138 (2016).
Andriuzzi, W. S. & Wall, D. H. Grazing and resource availability control soil nematode body size and abundance–mass relationship in semi‐arid grassland. Journal of Animal Ecology 87, 1407–1417 (2018).
Vanaverbeke, J., Steyaert, M., Vanreusel, A. & Vincx, M. Nematode biomass spectra as descriptors of functional changes due to human and natural impact. Marine Ecology Progress Series 249, 157–170 (2003).
Losi, V. et al. Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecological indicators 30, 80–89 (2013).
Franzo, A. & Del Negro, P. Functional diversity of free-living nematodes in river lagoons: can biological traits analysis (BTA) integrate traditional taxonomic-based approaches as a monitoring tool? Marine environmental research 145, 164–176 (2019).
Ristau, K., Spann, N. & Traunspurger, W. Species and trait compositions of freshwater nematodes as indicative descriptors of lake eutrophication. Ecological Indicators 53, 196–205 (2015).
Ptatscheck, C. & Traunspurger, W. The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847, 3519–3547 (2020).
Jensen, P. Feeding ecology of free-living aquatic nematodes. Marine Ecology Progress Series 35, 187–196 (1987).
Raes, M., Decraemer, W. & Vanreusel, A. Draconematidae (Nematoda) from cold-water corals in the Porcupine Seabight: the genus Tenuidraconema Decraemer, 1989. Organisms Diversity & Evolution 9, 41–e1 (2009).
Wieser, W. Die Beziehungen zwichen Mundhohlengestalt, Ernahrungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv for Zoologi (Ser. 2) 4, 439–484 (1953).
Moens, T. & Vincx, M. Observations on the Feeding Ecology of Estuarine Nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211–227 (1997).
Traunspurger, W. Bathymetric, seasonal and vertical distribution of feeding-types of nematodes in an oligotrophic lake. Vie et Milieu/Life & Environment 1–7 (1997).
Zeppilli, D. et al. Ecology and trophic role of Oncholaimus dyvae sp. nov.(Nematoda: Oncholaimidae) from the lucky strike hydrothermal vent field (Mid-Atlantic Ridge). Bmc Zoology 4, 1–15 (2019).
Ott, J. et al. Meiofauna Meets Microbes—Chemosynthetic Symbioses. in New Horizons in Meiobenthos Research: Profiles, Patterns and Potentials 79–119 (Springer, 2023).
Roggen, D. Is there an upper limit to the diameter of the pharynx in nematodes? (1971).
Lee, D. L. The Biology of Nematodes. (CRC Press, 2002).
Johnstone, I. L. The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. Bioessays 16, 171–178 (1994).
Page, A. P. & Johnstone, I. The cuticle. WormBook (2007).
Raes, M. et al. The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs 26, 113–126 (2007).
Semprucci, F., Colantoni, P., Sbrocca, C., Baldelli, G. & Balsamo, M. Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean). Journal of the Marine Biological Association of the United Kingdom 94, 1377–1385 (2014).
Ichiishi, K., Ekino, T., Kanzaki, N. & Shinya, R. Thick cuticles as an anti-predator defence in nematodes. Nematology 24, 1–10 (2021).
Ichiishi, K., Ekino, T., Kanzaki, N. & Shinya, R. Predation drives convergent evolution of the thick and baggy cuticle in nematodes. Nematology 24, 1131–1138 (2022).
Gourbault, N. & Decraemer, W. Marine nematodes of the family Epsilonematidae: a synthesis with phylogenetic relationships. (1996).
Decraemer, W., Gourbault, N. & Backeljau, T. Marine nematodes of the family Draconematidae (Nemata): a synthesis with phylogenetic relationships. Hydrobiologia 357, 185–202 (1997).
Bumbarger, D. J. et al. Three‐dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (nematoda: Rhabditida). Journal of Comparative Neurology 512, 271–281 (2009).
Cesaroni, L., Guidi, L., Balsamo, M. & Semprucci, F. Scanning electron microscopy in the taxonomical study of free-living marine nematodes. Microscopie 28, 31–38 (2017).
Jones, J. 14. Nematode Sense Organs. The biology of nematodes 353, (2002).
Tahseen, Q. Nematodes in aquatic environments: adaptations and survival strategies. Biodiversity Journal 3, 13–40 (2012).
Thistle, D. & Sherman, K. M. The nematode fauna of a deep-sea site exposed to strong near-bottom currents. Deep Sea Research Part A. Oceanographic Research Papers 32, 1077–1088 (1985).
Thistle, D., Lambshead, P. D. & Sherman, K. Nematode tail-shape groups respond to environmental differences in the deep sea. Vie et Milieu/Life & Environment 107, 115 (1995).
Allgén, C. Über einige freilebende marine Nematoden von der Ostküste Südamerikas (Uruguay, Nordküste Argentinas). Zoologischer Anzeiger 160, 206–217 (1958).
Gerlach, S. A. Freilebende Meeres-Nematoden von den Sarso-Inseln (Rotes Meer): 3. Beitrag der Arbeitsgruppe Litoralforschung. Meteor Forschungsergebnisse: Reihe D, Biologie 2, 19–43 (1967).
Filipjev, I. N. Free-living marine nematodes of the Sevastopol area. Transactions of the Zoological Laboratory and the Sevastopol Biological Station of the Russian Academy of Sciences (1918).
Kohli, B. A. & Jarzyna, M. A. Pitfalls of ignoring trait resolution when drawing conclusions about ecological processes. Global Ecology and Biogeography 30, 1139–1152 (2021).