NDVI and vegetation volume as predictors of urban bird diversity


  • UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.

  • Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity on health. Front. Ecol. Environ. 17, 383–390 (2019).

    Article 

    Google Scholar
     

  • Marselle, M. R., Lindley, S. J., Cook, P. A. & Bonn, A. Biodiversity and health in the urban environment. Curr. Environ. Health Rep. 8, 146–156 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gianfredi, V. et al. Urban green spaces and public health outcomes: A systematic review of literature. Eur. J. Public. Health 31, ckab164638 (2021).

    Article 

    Google Scholar
     

  • Wang, J. et al. Long-term exposure to residential greenness and decreased risk of depression and anxiety. Nat. Mental Health 2, 525–534 (2024).

    Article 

    Google Scholar
     

  • Grabowski, Z. et al. Cosmopolitan conservation: The multi-scalar contributions of urban green infrastructure to biodiversity protection. Biodivers. Conserv. 32, 3595–3606 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sweet, F. S. T., Apfelbeck, B., Hanusch, M., Garland Monteagudo, C. & Weisser, W. W. Data from public and governmental databases show that a large proportion of the regional animal species pool occur in cities in Germany. J. Urban Ecol. 8, (2022).

  • Olive, A. & Minichiello, A. Wild things in urban places: America’s largest cities and multi-scales of governance for endangered species conservation. Appl. Geogr. 43, 56–66 (2013).

    Article 

    Google Scholar
     

  • Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189, 320–334 (2019).

    Article 

    Google Scholar
     

  • Lepczyk, C. et al. Global patterns and drivers of urban bird diversity. In Ecology and Conservation of Birds in Urban Environments 13–33 (2017).

  • Garrard, G. E., Williams, N. S. G., Mata, L., Thomas, J. & Bekessy, S. A. Biodiversity sensitive urban design. Conserv. Lett. 11, e12411 (2018).

    Article 

    Google Scholar
     

  • Weisser, W. W. & Hauck, T. E. Animal-Aided Design—planning for biodiversity in the built environment by embedding a species’ life-cycle into landscape architectural and urban design processes. Landsc. Res. 1–22 (2024).

  • Bekessy, S. A. et al. Transparent planning for biodiversity and development in the urban fringe. Landsc. Urban Plan. 108, 140–149 (2012).

    Article 

    Google Scholar
     

  • De Martino, R., Franchino, R. & Frettoloso, C. A. Stepping stone approach to exploiting urban density. In Technological Imagination in the Green and Digital Transition (eds Arbizzani, E. et al.) 639–647 (Springer, 2023) https://doi.org/10.1007/978-3-031-29515-7_57.

    Chapter 

    Google Scholar
     

  • Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B. 281, 20133330 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lepczyk, C. A. et al. Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 67, 799–807 (2017).

  • Sandström, U. G., Angelstam, P. & Khakee, A. Urban comprehensive planning—identifying barriers for the maintenance of functional habitat networks. Landsc. Urban Plan. 75, 43–57 (2006).

    Article 

    Google Scholar
     

  • Kahl, S., Wood, C. M., Eibl, M. & Klinck, H. BirdNET: A deep learning solution for avian diversity monitoring. Ecol. Inf. 61, (2021).

  • Barthel, P. H. & Krüger, T. Liste der Vögel Deutschlands: Version 3.2. (2019).

  • Pérez-Granados, C. A. First assessment of Birdnet performance at varying distances: A playback experiment. Ardeola 70, 221–233 (2023).

    Article 

    Google Scholar
     

  • Arif, M., Hedley, R. & Bayne, E. Testing the accuracy of a BirdNET. Automatic Bird. Song Classifier 7 (2020).

  • Manzano-Rubio, R. Low-cost open-source recorders and ready-to-use machine learning approaches provide effective monitoring of threatened species. Ecol. Inf. 72, (2022).

  • Cole, J. S., Michel, N. L., Emerson, S. A. & Siegel, R. B. Automated bird sound classifications of long-duration recordings produce occupancy model outputs similar to manually annotated data. Ornithol. Appl. 124, 1–15 (2022).


    Google Scholar
     

  • Bota, G., Manzano-Rubio, R., Catalán, L. & Gómez-Catasús, J. Pérez-Granados, C. Hearing to the unseen: Audiomoth and birdNET as a cheap and easy method for monitoring cryptic bird species. Sensors 23, 7176 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinn, K., Kahl, S., Peery, M. Z., Klinck, H. & Wood, C. M. Feature embeddings from the BirdNET algorithm provide insights into avian ecology. Ecol. Inf. 74, 101995 (2023).

    Article 

    Google Scholar
     

  • Fairbairn, A. J., Burmeister, J. S., Weisser, W. W. & Meyer, S. T. BirdNET is as good as experts for acoustic bird monitoring in a European city. 09.17.613451 Preprint at https://doi.org/10.1101/2024.09.17.613451 (2024).

  • Borker, A. L. et al. Vocal activity as a low cost and scalable index of seabird colony size. Conserv. Biol. 28, 1100–1108 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pérez-Granados, C. et al. Vocal activity rate index: A useful method to infer terrestrial bird abundance with acoustic monitoring. Ibis 161, 901–907 (2019).

    Article 

    Google Scholar
     

  • Pérez-Granados, C. et al. Effort needed to accurately estimate vocal activity rate index using acoustic monitoring: A case study with a dawn-time singing passerine. Ecol. Indic. 107, 105608 (2019).

    Article 

    Google Scholar
     

  • Zhao, K., Chen, G., Liu, Y., Møller, A. P. & Zhang, Y. Population size assessment of adélie Penguin (Pygoscelis adeliae) chicks based on vocal activity rate index. Global Ecol. Conserv. 38, e02263 (2022).

    Article 

    Google Scholar
     

  • Hutschenreiter, A. et al. How to count bird calls? Vocal activity indices May provide different insights into bird abundance and behaviour depending on species traits. Methods Ecol. Evol. 15, 1071–1083 (2024).

    Article 

    Google Scholar
     

  • Benedetti, Y. et al. EVI and NDVI as proxies for multifaceted avian diversity in urban areas. Ecol. Appl. N/a, e2808 (2023).

  • Bino, G. et al. Accurate prediction of bird species richness patterns in an urban environment using Landsat-derived NDVI and spectral unmixing. Int. J. Remote Sens. 29, 3675–3700 (2008).

    Article 

    Google Scholar
     

  • Kontsiotis, V. J., Chatzigiovanakis, S., Valsamidis, E., Xofis, P. & Liordos, V. Normalized difference vegetation index as a proxy of urban bird species presence and distribution at different Spatial scales. Diversity 15, 1139 (2023).

    Article 

    Google Scholar
     

  • Leveau, L. M. Primary productivity and habitat diversity predict bird species richness and composition along urban-rural gradients of central Argentina. Urban Urban Green. 43, 126349 (2019).

    Article 

    Google Scholar
     

  • Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–252 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Van Wagtendonk, J. W. & Root, R. R. The use of multi-temporal Landsat normalized difference vegetation index (NDVI) data for mapping fuel models in Yosemite National park, USA. Int. J. Remote Sens. 24, 1639–1651 (2003).

    Article 

    Google Scholar
     

  • Geerken, R., Zaitchik, B. & Evans, J. P. Classifying rangeland vegetation type and coverage from NDVI time series using fourier filtered cycle similarity. Int. J. Remote Sens. 26, 5535–5554 (2005).

    Article 

    Google Scholar
     

  • Yan, E., Wang, G., Lin, H., Xia, C. & Sun, H. Phenology-based classification of vegetation cover types in Northeast China using MODIS NDVI and EVI time series. Int. J. Remote Sens. 36, 489–512 (2015).

    Article 

    Google Scholar
     

  • Huang, S., Tang, L., Hupy, J. P., Wang, Y. & Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32, 1–6 (2021).

    Article 

    Google Scholar
     

  • Hashim, H., Abd Latif, Z. & Adnan, N. A. Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) pleiades. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. XLII-4-W16 237–240 (Copernicus GmbH, 2019).


    Google Scholar
     

  • Fairbairn, A. J. et al. Urban biodiversity is affected by human-designed features of public squares. Nat. Cities. 1–10 (2024).

  • Mühlbauer, M., Weisser, W. W., Müller, N. & Meyer, S. T. A green design of City squares increases abundance and diversity of birds. Basic. Appl. Ecol. 56, 446–459 (2021).

    Article 

    Google Scholar
     

  • Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 74, 46–69 (2006).

    Article 

    Google Scholar
     

  • Gebremichael, G. et al. Bird community composition and functional guilds response to vegetation structure in Southwest Ethiopia. Forests 13, 2068 (2022).

    Article 

    Google Scholar
     

  • Zhang, Q., Han, R., Huang, Z. & Zou, F. Linking vegetation structure and bird organization: Response of mixed-species bird flocks to forest succession in subtropical China. Biodivers. Conserv. 22, 1965–1989 (2013).

    Article 

    Google Scholar
     

  • Hijmans, R. J. Terra: Spatial Data Analysis. https://rspatial.org/ (2024).

  • Martin, T. E. et al. Variability in the effectiveness of two ornithological survey methods between tropical forest ecosystems. PLoS ONE. 12, e0169786 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamberlain, S. A. & Boettiger, C. R. Python, and Ruby clients for GBIF species occurrence data. Preprint at https://doi.org/10.7287/peerj.preprints.3304v1 (2017).

  • Chamberlain, S. et al. Rgbif: Interface to the Global Biodiversity Information Facility API. (2025).

  • Mondal, P. Quantifying surface gradients with a 2-band enhanced vegetation index (EVI2). Ecol. Ind. 11, 918–924 (2011).

    Article 

    Google Scholar
     

  • Taubenböck, H., Esch, T., Wurm, M., Roth, A. & Dech, S. Object-based feature extraction using high Spatial resolution satellite data of urban areas. J. Spat. Sci. 55, 117–132 (2010).

    Article 

    Google Scholar
     

  • Wurm, M., Taubenböck, H., Schardt, M., Esch, T. & Dech, S. Object-based image information fusion using multisensor Earth observation data over urban areas. Int. J. Image Data Fus. 2, 121–147 (2011).

    Article 

    Google Scholar
     

  • Deparis, M. et al. Linking plant diversity and urban uses at the City-Block scale to inform urban planning. Land 14, 3 (2025).

    Article 

    Google Scholar
     

  • Snow, D. W. The migration and dispersal of British Blackbirds. Bird. Study. 13, 237–255 (1966).

    Article 

    Google Scholar
     

  • Ferry, C., Frochot, B. & Leruth, Y. Territory and home range of the Blackcap (Sylvia Atricapilla) and some other passerines, assessed and compared by mapping and Capture-Recapture. Stud. Avian Biol. 6, 119–120 (1981).


    Google Scholar
     

  • Cinelli, C., Ferwerda, J. & Hazlett, C. Sensemakr: Sensitivity Analysis Tools for Regression Models. (2024).

  • Naimi, B., Hamm, N., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2024).

  • Oksanen, J., et al. Vegan: Community Ecology Package. (2020). https://CRAN.R-project.org/package=vegan

  • Tobias, J. A. et al. AVONET: Morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits. Condor 110, 223–240 (2008).

    Article 

    Google Scholar
     

  • Legendre, P. Lmodel2: Model II Regression. (2018). https://CRAN.R-project.org/package=lmodel2

  • Winiarska, D., Szymański, P. & Osiejuk, T. S. Detection ranges of forest bird vocalisations: Guidelines for passive acoustic monitoring. Sci. Rep. 14, 894 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez Granados, C., Bota, G., Albarracín, J., Giralt, D. & Traba, J. Cost-Effectiveness assessment of five audio recording systems for wildlife monitoring: Differences between recording distances and singing direction. Ardeola 66, 311–325 (2019).

    Article 

    Google Scholar
     

  • Budka, M., Jobda, M., Szałański, P. & Piórkowski, H. Acoustic approach as an alternative to human-based survey in bird biodiversity monitoring in agricultural meadows. PLoS ONE. 17, e0266557 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James Reynolds, S., Ibáñez-Álamo, J. D., Sumasgutner, P. & Mainwaring, M. C. Urbanisation and nest Building in birds: A review of threats and opportunities. J. Ornithol. 160, 841–860 (2019).

    Article 

    Google Scholar
     

  • Derryberry, E. P. & Coomes, C. M. Providing urban birds nutritious food to feed chicks reduces urban versus rural breeding success disparities. J. Anim. Ecol. 89, 1546–1548 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Burt, S. A., Vos, C. J., Buijs, J. A. & Corbee, R. J. Nutritional implications of feeding free-living birds in public urban areas. J. Animm Physiol. Anim. Nutr. 105, 385–393 (2021).

    Article 

    Google Scholar
     

  • Tremblay, M. A. & St. Clair, C. C. Permeability of a heterogeneous urban landscape to the movements of forest songbirds. J. Appl. Ecol. 48, 679–688 (2011).

    Article 

    Google Scholar
     

  • Loss, S. R., Will, T. & Marra, P. P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 46, 99–120 (2015).

    Article 

    Google Scholar
     

  • Dale, S. Urban bird community composition influenced by size of urban green spaces, presence of native forest, and urbanization. Urban Ecosyst. 21, 1–14 (2018).

    Article 

    Google Scholar
     

  • Dyson, K. Conserving native trees increases native bird diversity and community composition on commercial office developments. J. Urban Ecol. 6, juaa033 (2020).

    Article 

    Google Scholar
     

  • Campos-Silva, L. A. & Piratelli, A. J. Vegetation structure drives taxonomic diversity and functional traits of birds in urban private native forest fragments. Urban Ecosyst. 24, 375–390 (2021).

    Article 

    Google Scholar
     

  • Lee, T. S. et al. A framework to identify priority wetland habitats and movement corridors for urban amphibian conservation. Ecol. Solut. Evid. 3, e12139 (2022).

    Article 

    Google Scholar
     

  • Lee, G., Hwang, J. & Cho, S. A novel index to detect vegetation in urban areas using UAV-Based multispectral images. Appl. Sci. 11, 3472 (2021).

    Article 

    Google Scholar
     

  • van den Berg, A. Staatsbroeders: Hoe Leefomgeving En Bouwstijl Beïnvloeden Vogeldiversiteit (Natuurhistorisch Museum Rotterdam, 2021).

  • Curipaco Quinto, P. Z. & Quispe-Melgar, H. R. Siguas Robles, O. Plant composition, water resources and built structures influence bird diversity: A case study in a high Andean City with homogeneous soundscape. Urban Ecosyst. 27, 1–14 (2024).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img