Parasitism as a driver of host diversification


  • Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).

    Article 

    Google Scholar
     

  • Zeng, Y. & Wiens, J. J. Species interactions have predictable impacts on diversification. Ecol. Lett. 24, 239–248 (2021).

    Article 

    Google Scholar
     

  • Aristide, L. & Morlon, H. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecol. Lett. 22, 2006–2017 (2019).

    Article 

    Google Scholar
     

  • Nosil, P. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63, 1902–1912 (2009).

    Article 

    Google Scholar
     

  • Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  • Fowler, M. S. Extinction cascades and the distribution of species interactions. Oikos 119, 864–873 (2010).

    Article 

    Google Scholar
     

  • Karvonen, A. & Seehausen, O. The role of parasitism in adaptive radiations — when might parasites promote and when might they constrain ecological speciation? Int. J. Ecol. https://doi.org/10.1155/2012/280169 (2012).

  • Hasik, A. Z. & Siepielski, A. M. Parasitism shapes selection by drastically reducing host fitness and increasing host fitness variation. Biol. Lett. 18, 20220323 (2022).

    Article 

    Google Scholar
     

  • Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite‐mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).

    Article 

    Google Scholar
     

  • Gobbin, T. P., Vanhove, M. P. M., Veenstra, R., Maan, M. E. & Seehausen, O. Variation in parasite infection between replicates of speciation in Lake Victoria cichlid fish. Evolution 77, 1682–1690 (2023).

    Article 

    Google Scholar
     

  • Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 1–16 (2013).

    Article 

    Google Scholar
     

  • El Nagar, A. & MacColl, A. D. C. Parasites contribute to ecologically dependent postmating isolation in the adaptive radiation of three-spined stickleback. Proc. R. Soc. B 283, 20160691 (2016).

    Article 

    Google Scholar
     

  • Malmstrøm, M. et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat. Genet. 48, 1204–1210 (2016).

    Article 

    Google Scholar
     

  • Morand, S. (macro-) Evolutionary ecology of parasite diversity: from determinants of parasite species richness to host diversification. Int. J. Parasitol. Parasites Wildl. 4, 80–87 (2015).

    Article 

    Google Scholar
     

  • Poulin, R. Parasite biodiversity revisited: frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).

    Article 

    Google Scholar
     

  • Price, P. W. Evolutionary Biology of Parasites Vol. 15 (Princeton Univ. Press, 1980).

  • Ilvonen, J. J., Kaunisto, K. M. & Suhonen, J. Odonates, gregarines and water mites: why are the same host species infected by both parasites? Ecol. Entomol. 43, 591–600 (2018).

    Article 

    Google Scholar
     

  • Gehman, A.-L. M. et al. Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite. Oecologia 183, 139–149 (2017).

    Article 

    Google Scholar
     

  • Lyberger, K., Farner, J., Couper, L. & Mordecai, E. A. A mosquito parasite is locally adapted to its host but not temperature. Am. Nat. 204, 121–132 (2024).

    Article 

    Google Scholar
     

  • Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Zahavi, A. Mate selection — a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Boots, M. & Sasaki, A. Parasite‐driven extinction in spatially explicit host–parasite systems. Am. Nat. 159, 706–713 (2002).

    Article 

    Google Scholar
     

  • Hwang, T.-W. & Kuang, Y. Deterministic extinction effect of parasites on host populations. J. Math. Biol. 46, 17–30 (2003).

    Article 

    Google Scholar
     

  • Auld, S. K. J. R., Tinkler, S. K. & Tinsley, M. C. Sex as a strategy against rapidly evolving parasites. Proc. R. Soc. B 283, 20162226 (2016).

    Article 

    Google Scholar
     

  • Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Koch, H. R., Wagner, S. & Becks, L. Antagonistic species interaction drives selection for sex in a predator–prey system. J. Evol. Biol. 33, 1180–1191 (2020).

    Article 

    Google Scholar
     

  • Haldane, J. B. S. Disease and evolution. La Ricerca Scientifica 19, 68–76 (1949).


    Google Scholar
     

  • Summers, K. et al. Parasitic exploitation as an engine of diversity. Biol. Rev. 78, 639–675 (2003).

    Article 

    Google Scholar
     

  • Thompson, J. N. & Burdon, J. J. Gene-for-gene coevolution between plants and parasites. Nature 360, 121–125 (1992).

    Article 

    Google Scholar
     

  • Brown, J. K. M. & Tellier, A. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49, 345–367 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Garamszegi, L. Z. & Nunn, C. L. Parasite‐mediated evolution of the functional part of the MHC in primates. J. Evol. Biol. 24, 184–195 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Klein, J., O’Huigin, C. & Deutsch, J. MHC polymorphism and parasites. Philos. Trans. R. Soc. B Biol. Sci. 346, 19940152 (1994).


    Google Scholar
     

  • Lheureux, F., Carreel, F., Jenny, C., Lockhart, B. & Iskra-Caruana, M. Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor. Appl. Genet. 106, 594–598 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Lockhart, B. E., Menke, J., Dahal, G. & Olszewski, N. E. Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J. Gen. Virol. 81, 1579–1585 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Ndowora, T. et al. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255, 214–220 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Roy, R. P. Semi-lethal hybrids in crosses of species and synthetic amphidipîoids of Triticum and Aegilops. Indian J. Genet. 15, 88–98 (1955).


    Google Scholar
     

  • Sears, E. R. Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoides. Genetics 29, 113–127 (1944).

    Article 
    CAS 

    Google Scholar
     

  • Bomblies, K. & Weigel, D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8, 382–393 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Engelstädter, J. & Fortun, N. Z. The dynamics of preferential host switching: host phylogeny as a key predictor of parasite distribution. Evolution 73, 1330–1340 (2019).

    Article 

    Google Scholar
     

  • Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Daszak, P. et al. Emerging infectious diseases and amphibian population declines.Emerg. Infect. Dis. 5, 735–748 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Valenzuela-Sánchez, A. et al. Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proc. R. Soc. B Biol. Sci. 284, 20171176 (2017).

    Article 

    Google Scholar
     

  • Castro, F. D. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Article 

    Google Scholar
     

  • Safran, R. J., Scordato, E. S. C., Symes, L. B., Rodríguez, R. L. & Mendelson, T. C. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol. Evol. 28, 643–650 (2013).

    Article 

    Google Scholar
     

  • Hooper, P. L. & Miller, G. F. Mutual mate choice can drive costly signaling even under perfect monogamy. Adapt. Behav. 16, 53–70 (2008).

    Article 

    Google Scholar
     

  • Jiang, Y., Bolnick, D. I. & Kirkpatrick, M. Assortative mating in animals. Am. Nat. 181, E125–E138 (2013).

    Article 

    Google Scholar
     

  • Hechtel, L. J., Johnson, C. L. & Juliano, S. A. Modification of antipredator behavior of Caecidotea intermedius by its parasite Acanthocephalus dirus. Ecology 74, 710–713 (1993).

    Article 

    Google Scholar
     

  • Moore, J. Responses of an avian predator and its isopod prey to an acanthocephalan parasite. Ecology 64, 1000–1015 (1983).

    Article 

    Google Scholar
     

  • Maan, M. E., Van Rooijen, A. M. C., Van Alphen, J. J. M. & Seehausen, O. Parasite-mediated sexual selection and species divergence in Lake Victoria cichlid fish. Biol. J. Linn. Soc. 94, 53–60 (2008).

    Article 

    Google Scholar
     

  • Folstad, I., Hope, A. M., Karter, A. & Skorping, A. Sexually selected color in male sticklebacks: a signal of both parasite exposure and parasite resistance? Oikos 69, 511–515 (1994).

    Article 

    Google Scholar
     

  • Selz, O. M., Pierotti, M. E. R., Maan, M. E., Schmid, C. & Seehausen, O. Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behav. Ecol. 25, 612–626 (2014).

    Article 

    Google Scholar
     

  • Milinski, M. & Bakker, T. C. M. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344, 330–333 (1990).

    Article 

    Google Scholar
     

  • Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host–parasite interactions in fish. Parasitology 137, 411–424 (2009).

    Article 

    Google Scholar
     

  • Huchard, E., Baniel, A., Schliehe-Diecks, S. & Kappeler, P. M. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate. Mol. Ecol. 22, 4071–4086 (2013).

    Article 

    Google Scholar
     

  • Dandine-Roulland, C., Laurent, R., Dall’Ara, I., Toupance, B. & Chaix, R. Genomic evidence for MHC disassortative mating in humans. Proc. R. Soc. B 286, 20182664 (2019).

    Article 

    Google Scholar
     

  • Penn, D. J., Damjanovich, K. & Potts, W. K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl Acad. Sci. USA 99, 11260–11264 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Slade, J. W. G., Watson, M. J. & MacDougall-Shackleton, E. A. ‘Balancing’ balancing selection? Assortative mating at the major histocompatibility complex despite molecular signatures of balancing selection. Ecol. Evol. 9, 5146–5157 (2019).

    Article 

    Google Scholar
     

  • Sepil, I. et al. No evidence for MHC class I‐based disassortative mating in a wild population of great tits. J. Evol. Biol. 28, 642–654 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sin, Y. W. et al. MHC class II-assortative mate choice in European badgers (Meles meles). Mol. Biol. 24, 3138–3150 (2015).


    Google Scholar
     

  • Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Eizaguirre, C., Lenz, T. L., Traulsen, A. & Milinski, M. Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett. 12, 5–12 (2009).

    Article 

    Google Scholar
     

  • Preisser, W. Latitudinal gradients of parasite richness: a review and new insights from helminths of cricetid rodents. Ecography 42, 1315–1330 (2019).

    Article 

    Google Scholar
     

  • Bolnick, D. I., Resetarits, E. J., Ballare, K., Stuart, Y. E. & Stutz, W. E. Scale‐dependent effects of host patch traits on species composition in a stickleback parasite metacommunity. Ecology 101, e03181 (2020).

    Article 

    Google Scholar
     

  • Hasik, A. Z. & Siepielski, A. M. A role for the local environment in driving species‐specific parasitism in a multi‐host parasite system. Freshw. Biol. 67, 1571–1583 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Blasco-Costa, I., Rouco, C. & Poulin, R. Biogeography of parasitism in freshwater fish: spatial patterns in hot spots of infection. Ecography 38, 301–310 (2015).

    Article 

    Google Scholar
     

  • Hasik, A. Z., Bried, J. T., Bolnick, D. I. & Siepielski, A. M. Is the local environment more important than within-host interactions in determining coinfection? J. Anim. Ecol. 93, 1541–1555 (2024).

    Article 

    Google Scholar
     

  • Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).

    Article 

    Google Scholar
     

  • Céspedes, V., Stoks, R., Green, A. J. & Sánchez, M. I. Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity. Biol. Invasions 21, 2431–2445 (2019).

    Article 

    Google Scholar
     

  • Mesquita, A. F. C. et al. Low resistance to chytridiomycosis in direct-developing amphibians. Sci. Rep. 7, 16605 (2017).

    Article 

    Google Scholar
     

  • Hasik, A. Z., Tye, S. P., Ping, T. & Siepielski, A. M. A common measure of prey immune function is not constrained by the cascading effects of predators. Evol. Ecol. https://doi.org/10.1007/s10682-021-10124-x (2021).

  • Worthen, W. B. & Turner, L. H. The effects of odonate species abundance and diversity on parasitism by water mites (Arrenurus spp.): testing the dilution effect. Int. J. Odonatol. 18, 233–248 (2015).

    Article 

    Google Scholar
     

  • Risely, A., Klaasen, M. & Hoye, B. J. Migratory animals feel the cost of getting sick: a meta-analysis across species. J. Anim. Ecol. 87, 301–314 (2017).

    Article 

    Google Scholar
     

  • Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proc. Natl Acad. Sci. USA 115, 1552–1557 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Altizer, S., Nunn, C. L. & Lindenfors, P. Do threatened hosts have fewer parasites? A comparative study in primates. J. Anim. Ecol. 76, 304–314 (2007).

    Article 

    Google Scholar
     

  • Bruns, E. L., Antonovics, J. & Hood, M. Is there a disease-free halo at species range limits? The codistribution of anther-smut disease and its host species. J. Ecol. 107, 1–11 (2019).

    Article 

    Google Scholar
     

  • Tompkins, D. M., White, A. R. & Boots, M. Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett. 6, 189–196 (2003).

    Article 

    Google Scholar
     

  • Atkinson, M. S. & Savage, A. E. Invasive amphibians alter host–pathogen interactions with primarily negative outcomes for native species. Biol. Conserv. 286, 110310 (2023).

    Article 

    Google Scholar
     

  • Wyatt, K. B. et al. Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE 3, e3602 (2008).

    Article 

    Google Scholar
     

  • Ryan, M. J., Lips, K. R. & Eichholz, M. W. Decline and extirpation of an endangered Panamanian stream frog population (Craugastor punctariolus) due to an outbreak of chytridiomycosis. Biol. Conserv. 141, 1636–1647 (2008).

    Article 

    Google Scholar
     

  • Hoyt, J. R. et al. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proc. R. Soc. B 283, 20152861 (2016).

    Article 

    Google Scholar
     

  • Hasik, A. Z. et al. Resetting our expectations for parasites and their effects on species interactions: a meta-analysis. Ecol. Lett. 26, 184–199 (2023).

    Article 

    Google Scholar
     

  • Reiczigel, J., Marozzi, M., Fábián, I. & Rózsa, L. Biostatistics for parasitologists — a primer to quantitative parasitology. Trends Parasitol. 35, 277–281 (2019).

    Article 

    Google Scholar
     

  • Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. B Biol. Sci. 291, 19810005 (1981).


    Google Scholar
     

  • Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).

    Article 

    Google Scholar
     

  • Poulin, R. et al. Evolutionary signature of ancient parasite pressures, or the ghost of parasitism past. Front. Ecol. Evol. 8, 195 (2020).

    Article 

    Google Scholar
     

  • Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).

    Article 

    Google Scholar
     

  • Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).

    Article 

    Google Scholar
     

  • Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article 

    Google Scholar
     

  • Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article 

    Google Scholar
     

  • Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2015).

    Article 

    Google Scholar
     

  • Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state‐dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).

    Article 

    Google Scholar
     

  • Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).

    Article 

    Google Scholar
     

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J. & Heath, T. A. The fossilized birth–death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447, 41–55 (2018).

    Article 

    Google Scholar
     

  • Leung, T. L. F. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol. Rev. 92, 410–430 (2015).

    Article 

    Google Scholar
     

  • Beaulieu, J. M. & O’Meara, B. C. Fossils do not substantially improve, and may even harm, estimates of diversification rate heterogeneity. Syst. Biol. 72, 50–61 (2023).

    Article 

    Google Scholar
     

  • Uyeda, J. C., Hansen, T. F. & McPeek, M. A. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908–15913 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Schluter, D. Variable success in linking micro- and macroevolution. Evol. J. Linn. Soc. 3, kzae016 (2024).

    Article 

    Google Scholar
     

  • Tsuboi, M. et al. The paradox of predictability provides a bridge between micro- and macroevolution. J. Evol. Biol. 37, 1413–1432 (2024).

    Article 

    Google Scholar
     

  • Ebert, D. & Fields, P. D. Host–parasite co-evolution and its genomic signature. Nat. Rev. Genet. 21, 754–768 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hasik, Z. A., King, C. K. & Hawlena, H. Interspecific host competition and parasite virulence evolution. Biol. Lett. 19, 20220553 (2023).

    Article 

    Google Scholar
     

  • Hite, J. L. & Cressler, C. E. Parasite-mediated anorexia and nutrition modulate virulence evolution. Integr. Comp. Biol. 59, 1264–1274 (2019).

    Article 

    Google Scholar
     

  • Poulin, R. Chapter 1 — the many roads to parasitism: a tale of convergence. Adv. Parasitol. 74, 1–40 (2011).

    Article 

    Google Scholar
     

  • Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    Article 

    Google Scholar
     

  • Bordes, F. & Morand, S. The impact of multiple infections on wild animal hosts: a review. Infect. Ecol. Epidemiol. 1, 7346 (2011).


    Google Scholar
     

  • Clerc, M., Fenton, A., Babayan, S. A. & Pedersen, A. B. Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology 146, 1096–1106 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B 286, 20191109 (2019).

    Article 

    Google Scholar
     

  • Brooks, D. R., Hoberg, E. P. & Boeger, W. A. In the eye of the cyclops: the classic case of cospeciation and why paradigms are important. Comp. Parasitol. 82, 1–8 (2015).

    Article 

    Google Scholar
     

  • Pfenning-Butterworth, A. C., Davies, T. J. & Cressler, C. E. Identifying co-phylogenetic hotspots for zoonotic disease. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200363 (2021).

    Article 

    Google Scholar
     

  • Buckling, A. & Hodgson, D. J. Short-term rates of parasite evolution predict the evolution of host diversity. J. Evol. Biol. 20, 1682–1688 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nunn, C. L. et al. Parasites and the evolutionary diversification of primate clades. Am. Nat. 10.0003-0147/2004/1640S5-40138$15.00 (2004).

  • Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).

    Article 

    Google Scholar
     

  • Albery, G. F. et al. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2023.0508 (2024).

  • Albery, G. F. et al. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology 145, 1410–1420 (2018).

    Article 

    Google Scholar
     

  • Hite, J., Pfenning, A. C. & Cressler, C. E. Starving the enemy? Feeding behavior shapes host–parasite interactions. Trends Ecol. Evol. 35, 68–80 (2020).

    Article 

    Google Scholar
     

  • Revell, L. J. & Harmon, L. J. Phylogenetic Comparative Methods in R (Princeton Univ. Press, 2022).

  • Weber, M. G. & Agrawal, A. A. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol. Evol. 27, 394–403 (2012).

    Article 

    Google Scholar
     

  • Osigus, H.-J., Rolfes, S., Herzog, R., Kamm, K. & Schierwater, B. Polyplacotoma mediterranea is a new ramified placozoan species. Curr. Biol. 29, R148–R149 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z.-Q. Phylum arthropoda. Zootaxa 3703, 1–82 (2013).


    Google Scholar
     

  • Howard, V., Landis, J. B., Beaulieu, J. M. & Cellinese, N. Geophytism in monocots leads to higher rates of diversification. Phytologist 225, 1023–1032 (2020).

    Article 

    Google Scholar
     

  • Pausas, J. G., Lamont, B. B., Paula, S., Appezzato-da-Glória, B. & Fidelis, A. Unearthing belowground bud banks in fire-prone ecosystems. N. Phytol. 217, 1435–1448 (2018).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img