Parasitism as a driver of host diversification


  • Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).

    Article 

    Google Scholar
     

  • Zeng, Y. & Wiens, J. J. Species interactions have predictable impacts on diversification. Ecol. Lett. 24, 239–248 (2021).

    Article 

    Google Scholar
     

  • Aristide, L. & Morlon, H. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecol. Lett. 22, 2006–2017 (2019).

    Article 

    Google Scholar
     

  • Nosil, P. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63, 1902–1912 (2009).

    Article 

    Google Scholar
     

  • Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

  • Fowler, M. S. Extinction cascades and the distribution of species interactions. Oikos 119, 864–873 (2010).

    Article 

    Google Scholar
     

  • Karvonen, A. & Seehausen, O. The role of parasitism in adaptive radiations — when might parasites promote and when might they constrain ecological speciation? Int. J. Ecol. https://doi.org/10.1155/2012/280169 (2012).

  • Hasik, A. Z. & Siepielski, A. M. Parasitism shapes selection by drastically reducing host fitness and increasing host fitness variation. Biol. Lett. 18, 20220323 (2022).

    Article 

    Google Scholar
     

  • Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite‐mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).

    Article 

    Google Scholar
     

  • Gobbin, T. P., Vanhove, M. P. M., Veenstra, R., Maan, M. E. & Seehausen, O. Variation in parasite infection between replicates of speciation in Lake Victoria cichlid fish. Evolution 77, 1682–1690 (2023).

    Article 

    Google Scholar
     

  • Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 1–16 (2013).

    Article 

    Google Scholar
     

  • El Nagar, A. & MacColl, A. D. C. Parasites contribute to ecologically dependent postmating isolation in the adaptive radiation of three-spined stickleback. Proc. R. Soc. B 283, 20160691 (2016).

    Article 

    Google Scholar
     

  • Malmstrøm, M. et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat. Genet. 48, 1204–1210 (2016).

    Article 

    Google Scholar
     

  • Morand, S. (macro-) Evolutionary ecology of parasite diversity: from determinants of parasite species richness to host diversification. Int. J. Parasitol. Parasites Wildl. 4, 80–87 (2015).

    Article 

    Google Scholar
     

  • Poulin, R. Parasite biodiversity revisited: frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).

    Article 

    Google Scholar
     

  • Price, P. W. Evolutionary Biology of Parasites Vol. 15 (Princeton Univ. Press, 1980).

  • Ilvonen, J. J., Kaunisto, K. M. & Suhonen, J. Odonates, gregarines and water mites: why are the same host species infected by both parasites? Ecol. Entomol. 43, 591–600 (2018).

    Article 

    Google Scholar
     

  • Gehman, A.-L. M. et al. Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite. Oecologia 183, 139–149 (2017).

    Article 

    Google Scholar
     

  • Lyberger, K., Farner, J., Couper, L. & Mordecai, E. A. A mosquito parasite is locally adapted to its host but not temperature. Am. Nat. 204, 121–132 (2024).

    Article 

    Google Scholar
     

  • Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Zahavi, A. Mate selection — a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Boots, M. & Sasaki, A. Parasite‐driven extinction in spatially explicit host–parasite systems. Am. Nat. 159, 706–713 (2002).

    Article 

    Google Scholar
     

  • Hwang, T.-W. & Kuang, Y. Deterministic extinction effect of parasites on host populations. J. Math. Biol. 46, 17–30 (2003).

    Article 

    Google Scholar
     

  • Auld, S. K. J. R., Tinkler, S. K. & Tinsley, M. C. Sex as a strategy against rapidly evolving parasites. Proc. R. Soc. B 283, 20162226 (2016).

    Article 

    Google Scholar
     

  • Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Koch, H. R., Wagner, S. & Becks, L. Antagonistic species interaction drives selection for sex in a predator–prey system. J. Evol. Biol. 33, 1180–1191 (2020).

    Article 

    Google Scholar
     

  • Haldane, J. B. S. Disease and evolution. La Ricerca Scientifica 19, 68–76 (1949).


    Google Scholar
     

  • Summers, K. et al. Parasitic exploitation as an engine of diversity. Biol. Rev. 78, 639–675 (2003).

    Article 

    Google Scholar
     

  • Thompson, J. N. & Burdon, J. J. Gene-for-gene coevolution between plants and parasites. Nature 360, 121–125 (1992).

    Article 

    Google Scholar
     

  • Brown, J. K. M. & Tellier, A. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49, 345–367 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Garamszegi, L. Z. & Nunn, C. L. Parasite‐mediated evolution of the functional part of the MHC in primates. J. Evol. Biol. 24, 184–195 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Klein, J., O’Huigin, C. & Deutsch, J. MHC polymorphism and parasites. Philos. Trans. R. Soc. B Biol. Sci. 346, 19940152 (1994).


    Google Scholar
     

  • Lheureux, F., Carreel, F., Jenny, C., Lockhart, B. & Iskra-Caruana, M. Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor. Appl. Genet. 106, 594–598 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Lockhart, B. E., Menke, J., Dahal, G. & Olszewski, N. E. Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J. Gen. Virol. 81, 1579–1585 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Ndowora, T. et al. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255, 214–220 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Roy, R. P. Semi-lethal hybrids in crosses of species and synthetic amphidipîoids of Triticum and Aegilops. Indian J. Genet. 15, 88–98 (1955).


    Google Scholar
     

  • Sears, E. R. Inviability of intergeneric hybrids involving Triticum monococcum and T. aegilopoides. Genetics 29, 113–127 (1944).

    Article 
    CAS 

    Google Scholar
     

  • Bomblies, K. & Weigel, D. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8, 382–393 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Engelstädter, J. & Fortun, N. Z. The dynamics of preferential host switching: host phylogeny as a key predictor of parasite distribution. Evolution 73, 1330–1340 (2019).

    Article 

    Google Scholar
     

  • Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Daszak, P. et al. Emerging infectious diseases and amphibian population declines.Emerg. Infect. Dis. 5, 735–748 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Valenzuela-Sánchez, A. et al. Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proc. R. Soc. B Biol. Sci. 284, 20171176 (2017).

    Article 

    Google Scholar
     

  • Castro, F. D. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Article 

    Google Scholar
     

  • Safran, R. J., Scordato, E. S. C., Symes, L. B., Rodríguez, R. L. & Mendelson, T. C. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol. Evol. 28, 643–650 (2013).

    Article 

    Google Scholar
     

  • Hooper, P. L. & Miller, G. F. Mutual mate choice can drive costly signaling even under perfect monogamy. Adapt. Behav. 16, 53–70 (2008).

    Article 

    Google Scholar
     

  • Jiang, Y., Bolnick, D. I. & Kirkpatrick, M. Assortative mating in animals. Am. Nat. 181, E125–E138 (2013).

    Article 

    Google Scholar
     

  • Hechtel, L. J., Johnson, C. L. & Juliano, S. A. Modification of antipredator behavior of Caecidotea intermedius by its parasite Acanthocephalus dirus. Ecology 74, 710–713 (1993).

    Article 

    Google Scholar
     

  • Moore, J. Responses of an avian predator and its isopod prey to an acanthocephalan parasite. Ecology 64, 1000–1015 (1983).

    Article 

    Google Scholar
     

  • Maan, M. E., Van Rooijen, A. M. C., Van Alphen, J. J. M. & Seehausen, O. Parasite-mediated sexual selection and species divergence in Lake Victoria cichlid fish. Biol. J. Linn. Soc. 94, 53–60 (2008).

    Article 

    Google Scholar
     

  • Folstad, I., Hope, A. M., Karter, A. & Skorping, A. Sexually selected color in male sticklebacks: a signal of both parasite exposure and parasite resistance? Oikos 69, 511–515 (1994).

    Article 

    Google Scholar
     

  • Selz, O. M., Pierotti, M. E. R., Maan, M. E., Schmid, C. & Seehausen, O. Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behav. Ecol. 25, 612–626 (2014).

    Article 

    Google Scholar
     

  • Milinski, M. & Bakker, T. C. M. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344, 330–333 (1990).

    Article 

    Google Scholar
     

  • Barber, I. & Scharsack, J. P. The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host–parasite interactions in fish. Parasitology 137, 411–424 (2009).

    Article 

    Google Scholar
     

  • Huchard, E., Baniel, A., Schliehe-Diecks, S. & Kappeler, P. M. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate. Mol. Ecol. 22, 4071–4086 (2013).

    Article 

    Google Scholar
     

  • Dandine-Roulland, C., Laurent, R., Dall’Ara, I., Toupance, B. & Chaix, R. Genomic evidence for MHC disassortative mating in humans. Proc. R. Soc. B 286, 20182664 (2019).

    Article 

    Google Scholar
     

  • Penn, D. J., Damjanovich, K. & Potts, W. K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl Acad. Sci. USA 99, 11260–11264 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Slade, J. W. G., Watson, M. J. & MacDougall-Shackleton, E. A. ‘Balancing’ balancing selection? Assortative mating at the major histocompatibility complex despite molecular signatures of balancing selection. Ecol. Evol. 9, 5146–5157 (2019).

    Article 

    Google Scholar
     

  • Sepil, I. et al. No evidence for MHC class I‐based disassortative mating in a wild population of great tits. J. Evol. Biol. 28, 642–654 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sin, Y. W. et al. MHC class II-assortative mate choice in European badgers (Meles meles). Mol. Biol. 24, 3138–3150 (2015).


    Google Scholar
     

  • Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Eizaguirre, C., Lenz, T. L., Traulsen, A. & Milinski, M. Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett. 12, 5–12 (2009).

    Article 

    Google Scholar
     

  • Preisser, W. Latitudinal gradients of parasite richness: a review and new insights from helminths of cricetid rodents. Ecography 42, 1315–1330 (2019).

    Article 

    Google Scholar
     

  • Bolnick, D. I., Resetarits, E. J., Ballare, K., Stuart, Y. E. & Stutz, W. E. Scale‐dependent effects of host patch traits on species composition in a stickleback parasite metacommunity. Ecology 101, e03181 (2020).

    Article 

    Google Scholar
     

  • Hasik, A. Z. & Siepielski, A. M. A role for the local environment in driving species‐specific parasitism in a multi‐host parasite system. Freshw. Biol. 67, 1571–1583 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Blasco-Costa, I., Rouco, C. & Poulin, R. Biogeography of parasitism in freshwater fish: spatial patterns in hot spots of infection. Ecography 38, 301–310 (2015).

    Article 

    Google Scholar
     

  • Hasik, A. Z., Bried, J. T., Bolnick, D. I. & Siepielski, A. M. Is the local environment more important than within-host interactions in determining coinfection? J. Anim. Ecol. 93, 1541–1555 (2024).

    Article 

    Google Scholar
     

  • Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).

    Article 

    Google Scholar
     

  • Céspedes, V., Stoks, R., Green, A. J. & Sánchez, M. I. Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity. Biol. Invasions 21, 2431–2445 (2019).

    Article 

    Google Scholar
     

  • Mesquita, A. F. C. et al. Low resistance to chytridiomycosis in direct-developing amphibians. Sci. Rep. 7, 16605 (2017).

    Article 

    Google Scholar
     

  • Hasik, A. Z., Tye, S. P., Ping, T. & Siepielski, A. M. A common measure of prey immune function is not constrained by the cascading effects of predators. Evol. Ecol. https://doi.org/10.1007/s10682-021-10124-x (2021).

  • Worthen, W. B. & Turner, L. H. The effects of odonate species abundance and diversity on parasitism by water mites (Arrenurus spp.): testing the dilution effect. Int. J. Odonatol. 18, 233–248 (2015).

    Article 

    Google Scholar
     

  • Risely, A., Klaasen, M. & Hoye, B. J. Migratory animals feel the cost of getting sick: a meta-analysis across species. J. Anim. Ecol. 87, 301–314 (2017).

    Article 

    Google Scholar
     

  • Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host–pathogen coevolution. Proc. Natl Acad. Sci. USA 115, 1552–1557 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546, 285–288 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Altizer, S., Nunn, C. L. & Lindenfors, P. Do threatened hosts have fewer parasites? A comparative study in primates. J. Anim. Ecol. 76, 304–314 (2007).

    Article 

    Google Scholar
     

  • Bruns, E. L., Antonovics, J. & Hood, M. Is there a disease-free halo at species range limits? The codistribution of anther-smut disease and its host species. J. Ecol. 107, 1–11 (2019).

    Article 

    Google Scholar
     

  • Tompkins, D. M., White, A. R. & Boots, M. Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol. Lett. 6, 189–196 (2003).

    Article 

    Google Scholar
     

  • Atkinson, M. S. & Savage, A. E. Invasive amphibians alter host–pathogen interactions with primarily negative outcomes for native species. Biol. Conserv. 286, 110310 (2023).

    Article 

    Google Scholar
     

  • Wyatt, K. B. et al. Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE 3, e3602 (2008).

    Article 

    Google Scholar
     

  • Ryan, M. J., Lips, K. R. & Eichholz, M. W. Decline and extirpation of an endangered Panamanian stream frog population (Craugastor punctariolus) due to an outbreak of chytridiomycosis. Biol. Conserv. 141, 1636–1647 (2008).

    Article 

    Google Scholar
     

  • Hoyt, J. R. et al. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proc. R. Soc. B 283, 20152861 (2016).

    Article 

    Google Scholar
     

  • Hasik, A. Z. et al. Resetting our expectations for parasites and their effects on species interactions: a meta-analysis. Ecol. Lett. 26, 184–199 (2023).

    Article 

    Google Scholar
     

  • Reiczigel, J., Marozzi, M., Fábián, I. & Rózsa, L. Biostatistics for parasitologists — a primer to quantitative parasitology. Trends Parasitol. 35, 277–281 (2019).

    Article 

    Google Scholar
     

  • Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. B Biol. Sci. 291, 19810005 (1981).


    Google Scholar
     

  • Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).

    Article 

    Google Scholar
     

  • Poulin, R. et al. Evolutionary signature of ancient parasite pressures, or the ghost of parasitism past. Front. Ecol. Evol. 8, 195 (2020).

    Article 

    Google Scholar
     

  • Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).

    Article 

    Google Scholar
     

  • Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).

    Article 

    Google Scholar
     

  • Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article 

    Google Scholar
     

  • Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article 

    Google Scholar
     

  • Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2015).

    Article 

    Google Scholar
     

  • Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state‐dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).

    Article 

    Google Scholar
     

  • Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).

    Article 

    Google Scholar
     

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J. & Heath, T. A. The fossilized birth–death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447, 41–55 (2018).

    Article 

    Google Scholar
     

  • Leung, T. L. F. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol. Rev. 92, 410–430 (2015).

    Article 

    Google Scholar
     

  • Beaulieu, J. M. & O’Meara, B. C. Fossils do not substantially improve, and may even harm, estimates of diversification rate heterogeneity. Syst. Biol. 72, 50–61 (2023).

    Article 

    Google Scholar
     

  • Uyeda, J. C., Hansen, T. F. & McPeek, M. A. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908–15913 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Schluter, D. Variable success in linking micro- and macroevolution. Evol. J. Linn. Soc. 3, kzae016 (2024).

    Article 

    Google Scholar
     

  • Tsuboi, M. et al. The paradox of predictability provides a bridge between micro- and macroevolution. J. Evol. Biol. 37, 1413–1432 (2024).

    Article 

    Google Scholar
     

  • Ebert, D. & Fields, P. D. Host–parasite co-evolution and its genomic signature. Nat. Rev. Genet. 21, 754–768 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hasik, Z. A., King, C. K. & Hawlena, H. Interspecific host competition and parasite virulence evolution. Biol. Lett. 19, 20220553 (2023).

    Article 

    Google Scholar
     

  • Hite, J. L. & Cressler, C. E. Parasite-mediated anorexia and nutrition modulate virulence evolution. Integr. Comp. Biol. 59, 1264–1274 (2019).

    Article 

    Google Scholar
     

  • Poulin, R. Chapter 1 — the many roads to parasitism: a tale of convergence. Adv. Parasitol. 74, 1–40 (2011).

    Article 

    Google Scholar
     

  • Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).

    Article 

    Google Scholar
     

  • Bordes, F. & Morand, S. The impact of multiple infections on wild animal hosts: a review. Infect. Ecol. Epidemiol. 1, 7346 (2011).


    Google Scholar
     

  • Clerc, M., Fenton, A., Babayan, S. A. & Pedersen, A. B. Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology 146, 1096–1106 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B 286, 20191109 (2019).

    Article 

    Google Scholar
     

  • Brooks, D. R., Hoberg, E. P. & Boeger, W. A. In the eye of the cyclops: the classic case of cospeciation and why paradigms are important. Comp. Parasitol. 82, 1–8 (2015).

    Article 

    Google Scholar
     

  • Pfenning-Butterworth, A. C., Davies, T. J. & Cressler, C. E. Identifying co-phylogenetic hotspots for zoonotic disease. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200363 (2021).

    Article 

    Google Scholar
     

  • Buckling, A. & Hodgson, D. J. Short-term rates of parasite evolution predict the evolution of host diversity. J. Evol. Biol. 20, 1682–1688 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Marston, M. F. et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc. Natl Acad. Sci. USA 109, 4544–4549 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nunn, C. L. et al. Parasites and the evolutionary diversification of primate clades. Am. Nat. 10.0003-0147/2004/1640S5-40138$15.00 (2004).

  • Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689–697 (2014).

    Article 

    Google Scholar
     

  • Albery, G. F. et al. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2023.0508 (2024).

  • Albery, G. F. et al. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology 145, 1410–1420 (2018).

    Article 

    Google Scholar
     

  • Hite, J., Pfenning, A. C. & Cressler, C. E. Starving the enemy? Feeding behavior shapes host–parasite interactions. Trends Ecol. Evol. 35, 68–80 (2020).

    Article 

    Google Scholar
     

  • Revell, L. J. & Harmon, L. J. Phylogenetic Comparative Methods in R (Princeton Univ. Press, 2022).

  • Weber, M. G. & Agrawal, A. A. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol. Evol. 27, 394–403 (2012).

    Article 

    Google Scholar
     

  • Osigus, H.-J., Rolfes, S., Herzog, R., Kamm, K. & Schierwater, B. Polyplacotoma mediterranea is a new ramified placozoan species. Curr. Biol. 29, R148–R149 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z.-Q. Phylum arthropoda. Zootaxa 3703, 1–82 (2013).


    Google Scholar
     

  • Howard, V., Landis, J. B., Beaulieu, J. M. & Cellinese, N. Geophytism in monocots leads to higher rates of diversification. Phytologist 225, 1023–1032 (2020).

    Article 

    Google Scholar
     

  • Pausas, J. G., Lamont, B. B., Paula, S., Appezzato-da-Glória, B. & Fidelis, A. Unearthing belowground bud banks in fire-prone ecosystems. N. Phytol. 217, 1435–1448 (2018).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Attenborough’s echidna rediscovered by combining Indigenous knowledge with camera-trapping

    Attenborough’s long-beaked echidna still survives in the Cyclops MountainsWe didn’t capture any photographic evidence of Z. attenboroughi during the 2022 survey; from the...
    Biodiversity
    4
    minutes

    Impact of transfer learning methods and dataset characteristics on generalization in...

    The data processing, methodology, and evaluation workflow for this study are outlined in Fig. 1.(Left) Distribution of the number of recordings per species in...
    Biodiversity
    18
    minutes

    Global intraspecific diversity of marine forests of brown macroalgae predicted by...

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. https://doi.org/10.1038/nrg.2016.58 (2016).Maggs, C. A. et al. Evaluating signatures of...
    Biodiversity
    9
    minutes

    Insect trafficking poses a risk to wildlife and human health

    Four men were recently arrested and fined for attempting to smuggle more than 5,000 ants out of Kenya. Aiming...
    Biodiversity
    3
    minutes
    spot_imgspot_img