Phylogenomics and comparative genomic perspective on the avian radiation


  • Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

  • Haas, O. & Simpson, G. Analysis of some phylogenetic terms, with attempts at redefinition. Proc. Am. Phil. Soc. 90, 319–349 (1946).

    CAS 

    Google Scholar
     

  • Mayr, E. What Evolution Is (Basic Books, 2001).

  • Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).

    Article 

    Google Scholar
     

  • Futuyma, D. J. Ecology, speciation, and adaptive radiation: the long view. Evolution 62, 2446–2449 (2008).

    Article 

    Google Scholar
     

  • Schweber, S. S. Darwin and the political economists: divergence of character. J. Hist. Biol. 13, 195–289 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Rieseberg, L. H., Archer, M. A. & Wayne, R. K. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).

    Article 

    Google Scholar
     

  • Baker, J. M. Adaptive speciation: the role of natural selection in mechanisms of geographic and non-geographic speciation. Stud. Hist. Phil. Biol. Biomed. Sci. 36, 303–326 (2005).

    Article 

    Google Scholar
     

  • Grant, P. R. & Grant, B. R. Adaptive radiation of Darwin’s finches: recent data help explain how this famous group of Galápagos birds evolved, although gaps in our understanding remain. Am. Sci. 90, 130–139 (2002).

    Article 

    Google Scholar
     

  • Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M. & Fleischer, R. C. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21, 1838–1844 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Losos, J. B., Glor, R. E., Kolbe, J. J. & Nicholson, K. Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards. Ann. Mo. Bot. Gard. 93, 24–33 (2006).

    Article 

    Google Scholar
     

  • Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. Biol. Sci. 273, 1987–1998 (2006).


    Google Scholar
     

  • Briggs, D. E. G. The Cambrian explosion. Curr. Biol. 25, R864–R868 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yang, A. S. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol. Dev. 3, 59–72 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Feduccia, A. Explosive evolution in tertiary birds and mammals. Science 267, 637–638 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Gill, F., Donsker, D. & Rasmussen, P. (eds). IOC World Bird List (v 15.1). International Ornithological Congress http://www.worldbirdnames.org/ (2025).

  • Owen, P. III On the archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Phil. Trans. R. Soc. Lond. 153, 33–47 (1863).


    Google Scholar
     

  • Chen, P. J., Dong, Z. M. & Zhen, S. N. An exceptionally well-preserved theropod dinosaur from the Yixian formation of China. Nature 391, 147–152 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Ji, Q. & Ji, S. A. On the discovery of the earliest bird fossil in China (Sinosauropteryx gen. nov.) and the origin of birds. Chin. Geol. 233, 30–33 (1996).


    Google Scholar
     

  • Dyke, G. J. & Nudds, R. L. The fossil record and limb disparity of enantiornithines, the dominant flying birds of the Cretaceous. Lethaia 42, 248–254 (2009).

    Article 

    Google Scholar
     

  • Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cooper, A. & Penny, D. Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275, 1109–1113 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Brown, J. W., Rest, J. S., García-Moreno, J., Sorenson, M. D. & Mindell, D. P. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 6, 6 (2008).

    Article 

    Google Scholar
     

  • Wu, S. et al. Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proc. Natl Acad. Sci. USA 121, e2319696121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Feduccia, A. ‘Big bang’ for tertiary birds? Trends Ecol. Evol. 18, 172–176 (2003).

    Article 

    Google Scholar
     

  • Claramunt, S. & Cracraft, J. A new time tree reveals earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).

    Article 

    Google Scholar
     

  • Field, D. J. et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831.e2 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article 
    CAS 

    Google Scholar
     

  • McCormack, J. E. et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 8, e54848 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Brown, J. W., Wang, N. & Smith, S. A. The development of scientific consensus: analyzing conflict and concordance among avian phylogenies. Mol. Phylogenet. Evol. 116, 69–77 (2017).

    Article 

    Google Scholar
     

  • Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Suh, A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool. Scr. 45, 50–62 (2016).

    Article 

    Google Scholar
     

  • Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 13, e1002224 (2015).

    Article 

    Google Scholar
     

  • Barker, F. K., Cibois, A., Schikler, P., Feinstein, J. & Cracraft, J. Phylogeny and diversification of the largest avian radiation. Proc. Natl Acad. Sci. USA 101, 11040–11045 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).

    Article 

    Google Scholar
     

  • Campagna, L. & Toews, D. P. L. The genomics of adaptation in birds. Curr. Biol. 32, R1173–R1186 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tobias, J. A., Ottenburghs, J. & Pigot, A. L. Avian diversity: speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 51, 533–560 (2020).

    Article 

    Google Scholar
     

  • Berv, J. S. et al. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. Sci. Adv. 10, eadp0114 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sheldon, F. H. & Bledsoe, A. H. Avian molecular systematics, 1970s to 1990s. Annu. Rev. Ecol. Syst. 24, 243–278 (1993).

    Article 

    Google Scholar
     

  • Wink, M. in Avian Genomics in Ecology and Evolution: From the Lab into the Wild (ed. Kraus, R. H. S.) 7–19 (Springer, 2019).

  • Cracraft, J. et al. in Assembling the Tree of Life (eds Cracraft, J. & Donoghue, M. J.) 468–489 (Oxford Univ. Press, 2004).

  • Zhang, G. et al. Comparative genomic data of the avian phylogenomics project. Gigascience 3, 26 (2014).

    Article 

    Google Scholar
     

  • Armstrong, J. et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kuhl, H. et al. An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life. Mol. Biol. Evol. 38, 108–127 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Margulies, E. H., Blanchette, M., NISC Comparative Sequencing Program Haussler, D. & Green, E. D. Identification and characterization of multi-species conserved sequences. Genome Res. 13, 2507–2518 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    Article 

    Google Scholar
     

  • Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hosner, P. A., Faircloth, B. C., Glenn, T. C., Braun, E. L. & Kimball, R. T. Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). Mol. Biol. Evol. 33, 1110–1125 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Batista, R. et al. Phylogenomics and biogeography of the world’s thrushes (Aves, Turdus): new evidence for a more parsimonious evolutionary history. Proc. Biol. Sci. 287, 20192400 (2020).


    Google Scholar
     

  • McCullough, J. M., Joseph, L., Moyle, R. G. & Andersen, M. J. Ultraconserved elements put the final nail in the coffin of traditional use of the genus Meliphaga (Aves: Meliphagidae). Zool. Scr. 48, 411–418 (2019).

    Article 

    Google Scholar
     

  • Tsai, W. L. E. et al. Museum genomics reveals the speciation history of Dendrortyx wood-partridges in the Mesoamerican highlands. Mol. Phylogenet. Evol. 136, 29–34 (2019).

    Article 

    Google Scholar
     

  • Kirchman, J. J. et al. Phylogeny based on ultra-conserved elements clarifies the evolution of rails and allies (Ralloidea) and is the basis for a revised classification. Ornithology 138, ukab042 (2021).

    Article 

    Google Scholar
     

  • Andersen, M. J. et al. Ultraconserved elements resolve genus-level relationships in a major Australasian bird radiation (Aves: Meliphagidae). EMU Aust. Orn. 119, 218–232 (2019).

    Article 

    Google Scholar
     

  • Hruska, J. P. et al. Ultraconserved elements resolve the phylogeny and corroborate patterns of molecular rate variation in herons (Aves: Ardeidae). Ornithology 140, ukad005 (2023).

    Article 

    Google Scholar
     

  • Schield, D. R. et al. Phylogeny and historical biogeography of the swallow family (Hirundinidae) inferred from comparisons of thousands of UCE loci. Mol. Phylogenet. Evol. 197, 108111 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kimball, R. T., Hosner, P. A. & Braun, E. L. A phylogenomic supermatrix of Galliformes (landfowl) reveals biased branch lengths. Mol. Phylogenet. Evol. 158, 107091 (2021).

    Article 

    Google Scholar
     

  • McCullough, J. M., Moyle, R. G., Smith, B. T. & Andersen, M. J. A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes). Proc. Biol. Sci. 286, 20190122 (2019).


    Google Scholar
     

  • Nabholz, B., Künstner, A., Wang, R., Jarvis, E. D. & Ellegren, H. Dynamic evolution of base composition: causes and consequences in avian phylogenomics. Mol. Biol. Evol. 28, 2197–2210 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. Genomics: bird sequencing project takes off. Nature 522, 34 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution: From the Lab into the Wild (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).

  • Bravo, G. A., Schmitt, C. J. & Edwards, S. V. What have we learned from the first 500 avian genomes? Annu. Rev. Ecol. Evol. Syst. 52, 611–639 (2021).

    Article 

    Google Scholar
     

  • Reddy, S. et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66, 857–879 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Braun, E. L. & Kimball, R. T. Data types and the phylogeny of Neoaves. Birds 2, 1–22 (2021).

    Article 

    Google Scholar
     

  • Gibb, G. C., Kardailsky, O., Kimball, R. T., Braun, E. L. & Penny, D. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24, 269–280 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Guillerme, T. et al. Innovation and elaboration on the avian tree of life. Sci. Adv. 9, eadg1641 (2023).

    Article 

    Google Scholar
     

  • Mirarab, S. et al. A region of suppressed recombination misleads neoavian phylogenomics. Proc. Natl Acad. Sci. USA 121, e2319506121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Degnan, J. H. & Salter, L. A. Gene tree distributions under the coalescent process. Evolution 59, 24–37 (2005).


    Google Scholar
     

  • Slatkin, M. & Pollack, J. L. Subdivision in an ancestral species creates asymmetry in gene trees. Mol. Biol. Evol. 25, 2241–2246 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hoelzer, G. A. & Meinick, D. J. Patterns of speciation and limits to phylogenetic resolution. Trends Ecol. Evol. 9, 104–107 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Gatesy, J. & Springer, M. S. Phylogenomic coalescent analyses of avian retroelements infer zero-length branches at the base of Neoaves, emergent support for controversial clades, and ancient introgressive hybridization in Afroaves. Genes 13, 1167 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. Most genomic loci misrepresent the phylogeny of an avian radiation because of ancient gene flow. Syst. Biol. 70, 961–975 (2021).

    Article 

    Google Scholar
     

  • Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    Article 

    Google Scholar
     

  • Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594–599 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Singhal, S. et al. The dynamics of introgression across an avian radiation. Evol. Lett. 5, 568–581 (2021).

    Article 

    Google Scholar
     

  • Cole, T. L. et al. Genomic insights into the secondary aquatic transition of penguins. Nat. Commun. 13, 3912 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ottenburghs, J. et al. Avian introgression in the genomic era. Avian Res. 8, 30 (2017).

    Article 

    Google Scholar
     

  • Ottenburghs, J., Ydenberg, R. C., Van Hooft, P., Van Wieren, S. E. & Prins, H. H. T. The avian hybrids project: gathering the scientific literature on avian hybridization. Ibis 157, 892–894 (2015).

    Article 

    Google Scholar
     

  • Lanier, H. C. & Knowles, L. L. Is recombination a problem for species-tree analyses? Syst. Biol. 61, 691–701 (2012).

    Article 

    Google Scholar
     

  • Liu, L. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24, 2542–2543 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2010).

    Article 
    CAS 

    Google Scholar
     

  • McCormack, J. E., Huang, H. & Knowles, L. L. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. Syst. Biol. 58, 501–508 (2009).

    Article 

    Google Scholar
     

  • Forsberg, R., Drummond, A. J. & Hein, J. Tree measures and the number of segregating sites in time-structured population samples. BMC Genet. 6, 35 (2005).

    Article 

    Google Scholar
     

  • Steenwyk, J. L., Li, Y., Zhou, X., Shen, X.-X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834–850 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Whelan, S. The genetic code can cause systematic bias in simple phylogenetic models. Phil. Trans. R. Soc. B 363, 4003–4011 (2008).

    Article 

    Google Scholar
     

  • Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).

    Article 

    Google Scholar
     

  • Felsenstein, J. Distance methods for inferring phylogenies: a justification. Evolution 38, 16–24 (1984).

    Article 

    Google Scholar
     

  • Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  • Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).

    Article 

    Google Scholar
     

  • Schenk, J. J., Rowe, K. C. & Steppan, S. J. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62, 837–864 (2013).

    Article 

    Google Scholar
     

  • Burbrink, F. T., Ruane, S. & Pyron, R. A. When are adaptive radiations replicated in areas? Ecological opportunity and unexceptional diversification in West Indian dipsadine snakes (Colubridae: Alsophiini). J. Biogeogr. 39, 465–475 (2012).

    Article 

    Google Scholar
     

  • Mitchell, K. J., Cooper, A. & Phillips, M. J. Comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cracraft, J. et al. Response to comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Morgan, J. V., Bralower, T. J., Brugger, J. & Wünnemann, K. The Chicxulub impact and its environmental consequences. Nat. Rev. Earth Environ. 3, 338–354 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Senel, C. B. et al. Chicxulub impact winter sustained by fine silicate dust. Nat. Geosci. 16, 1033–1040 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schoene, B. et al. U–Pb constraints on pulsed eruption of the Deccan traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary. Science 363, 866–870 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Paton, T., Haddrath, O. & Baker, A. J. Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc. Biol. Sci. 269, 839–846 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl Acad. Sci. USA 99, 8139–8144 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Houde, P., Braun, E. L. & Zhou, L. Deep-time demographic inference suggests ecological release as driver of neoavian adaptive radiation. Diversity 12, 164 (2020).

    Article 

    Google Scholar
     

  • Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 111, 7537–7541 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gallagher, W. B. et al. On the last mosasaurs: late maastrichtian mosasaurs and the Cretaceous–Paleogene boundary in New Jersey. Bull. Soc. Geol. Fr. 183, 145–150 (2012).

    Article 

    Google Scholar
     

  • D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article 

    Google Scholar
     

  • Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K–Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).

    Article 

    Google Scholar
     

  • Sheehan, P. M. & Fastovsky, D. E. Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20, 556–560 (1992).

    Article 

    Google Scholar
     

  • Archibald, D. J. & Bryant, L. J. in Global Catastrophes in Earth History; an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality 549–562 (GeoScienceWorld, 1990).

  • MacLeod, N. et al. The Cretaceous–Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).

    Article 

    Google Scholar
     

  • Feduccia, A. Avian extinction at the end of the Cretaceous: assessing the magnitude and subsequent explosive radiation. Cretac. Res. 50, 1–15 (2014).

    Article 

    Google Scholar
     

  • Olson, S. L. & Parris, D. C. The Cretaceous Birds of New Jersey (Smithsonian Institution, 1987).

  • Feduccia, A. Tertiary bird history: notes and comments. Short Courses Paleontol. 7, 179–189 (1994).

    Article 

    Google Scholar
     

  • Feduccia, A. The Origin and Evolution of Birds (Yale Univ. Press, 1996).

  • Mayr, G. Paleogene Fossil Birds (Springer, 2009).

  • Mayr, E. Ecological factors in speciation. Evolution 1, 263 (1947).

    Article 

    Google Scholar
     

  • Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

  • Wu, A. C. & Palopoli, M. Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet. 28, 283–308 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Manuel, S. & Liu, Y. in Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 129–145 (Springer, 2018).

  • Upchurch, P. Gondwanan break-up: legacies of a lost world? Trends Ecol. Evol. 23, 229–236 (2008).

    Article 

    Google Scholar
     

  • Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Illera, J. C., Rando, J. C., Melo, M., Valente, L. & Stervander, M. Avian island radiations shed light on the dynamics of adaptive and nonadaptive radiation. Cold Spring Harb. Persp. Biol. 16, a041451 (2024).

    Article 

    Google Scholar
     

  • Glor, R. E. Remarkable new evidence for island radiation in birds. Mol. Ecol. 20, 4823–4826 (2011).

    Article 

    Google Scholar
     

  • Oliveros, C. H. et al. Rapid Laurasian diversification of a pantropical bird family during the Oligocene–Miocene transition. Ibis 162, 137–152 (2020).

    Article 

    Google Scholar
     

  • Moyle, R. G. et al. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat. Commun. 7, 12709 (2016).

    Article 

    Google Scholar
     

  • McLoughlin, S. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust. J. Bot. 49, 271 (2001).

    Article 

    Google Scholar
     

  • Cracraft, J. Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proc. Biol. Sci. 268, 459–469 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

  • Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).

    Article 

    Google Scholar
     

  • Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).


    Google Scholar
     

  • Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).

    Article 

    Google Scholar
     

  • Martin, C. H. & Richards, E. J. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? Annu. Rev. Ecol. Evol. Syst. 50, 569–593 (2019).

    Article 

    Google Scholar
     

  • Jablonski, D. Evolvability and macroevolution: overview and synthesis. Evol. Biol. 49, 265–291 (2022).

    Article 

    Google Scholar
     

  • Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. N. Phytol. 207, 260–274 (2015).

    Article 

    Google Scholar
     

  • Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).

    Article 

    Google Scholar
     

  • Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell, 2001).

  • Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391.e14 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Sci. Nat. 91, 455–471 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces). Biol. J. Linn. Soc. Lond. 113, 805–819 (2014).

    Article 

    Google Scholar
     

  • Zhou, Z. Dinosaur evolution: feathers up for selection. Curr. Biol. 24, R751–R753 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Brush, A. H. Evolving a protofeather and feather diversity. Am. Zool. 40, 631–639 (2000).


    Google Scholar
     

  • Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    Article 

    Google Scholar
     

  • Orkney, A. & Hedrick, B. P. Small body size is associated with increased evolutionary lability of wing skeleton proportions in birds. Nat. Commun. 15, 4208 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Newton, I. The role of food in limiting bird numbers. Ardea 55, 11–30 (2002).

    Article 

    Google Scholar
     

  • Blanckenhorn, W. U. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Gaston, K. & Blackburn, T. Birds, body size and the threat of extinction. Phil. Trans. R. Soc. B 347, 205–212 (1995).

    Article 

    Google Scholar
     

  • Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    Article 

    Google Scholar
     

  • Moen, D. & Morlon, H. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation. PLoS Biol. 12, e1001854 (2014).

    Article 

    Google Scholar
     

  • Wang, M., O’Connor, J. K., Xu, X. & Zhou, Z. A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569, 256–259 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. & Zhou, Z. Low morphological disparity and decelerated rate of limb size evolution close to the origin of birds. Nat. Ecol. Evol. 7, 1257–1266 (2023).

    Article 

    Google Scholar
     

  • Chan, N. R. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs. Proc. Biol. Sci. 284, 20171556 (2017).


    Google Scholar
     

  • Wang, S. et al. Digital restoration of the pectoral girdles of two early Cretaceous birds and implications for early-flight evolution. eLife 11, e76086 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bout, R. G. & Zweers, G. A. The role of cranial kinesis in birds. Comp. Biochem. Physiol. A 131, 197–205 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lautenschlager, S., Witmer, L. M., Altangerel, P. & Rayfield, E. J. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc. Natl Acad. Sci. USA 110, 20657–20662 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Huxley, T. H. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observed in that class. J. Anat. Physiol. 2, 390 (1867).


    Google Scholar
     

  • Gussekloo, S. W., Vosselman, M. G. & Bout, R. G. Three-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry. J. Exp. Biol. 204, 1735–1744 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Zusi, R. L. Patterns of diversity in the avian skull. Skull 2, 391–437 (1993).


    Google Scholar
     

  • Field, D. J., Burton, M. G., Benito, J., Plateau, O. & Navalón, G. Whence the birds: 200 years of dinosaurs, avian antecedents. Biol. Lett. 21, 20240500 (2025).

    Article 

    Google Scholar
     

  • Benito, J., Kuo, P.-C., Widrig, K. E., Jagt, J. W. M. & Field, D. J. Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 612, 100–105 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zweers, G. A. Pecking of the pigeon (Columba Livia L.). Behaviour 81, 173–229 (1982).

    Article 

    Google Scholar
     

  • Zusi, R. L. A functional and evolutionary analysis of rhynchokinesis in birds. Smithson. Contrib. Zool. 395, 1–40 (1984).


    Google Scholar
     

  • Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).

    Article 

    Google Scholar
     

  • Sheard, C. et al. Beak shape and nest material use in birds. Phil. Trans. R. Soc. B 378, 20220147 (2023).

    Article 

    Google Scholar
     

  • Widrig, K. & Field, D. J. The evolution and fossil record of palaeognathous birds (Neornithes: Palaeognathae). Diversity 14, 105 (2022).

    Article 

    Google Scholar
     

  • Zweers, G. A., Berge, J. C. V. & Berkhoudt, H. Evolutionary patterns of avian trophic diversification. Zool. Anal. Complex. Syst. 100, 25–57 (1997).


    Google Scholar
     

  • Wang, M., Stidham, T. A., O’Connor, J. K. & Zhou, Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 11, e81337 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc. Natl Acad. Sci. USA 116, 19571–19578 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Field, D. J., Benito, J., Chen, A., Jagt, J. W. M. & Ksepka, D. T. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y., Zhang, C. & Xu, X. Deep time diversity and the early radiations of birds. Proc. Natl Acad. Sci. USA 118, e2019865118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gussekloo, S. W. S. et al. Functional and evolutionary consequences of cranial fenestration in birds. Evolution 71, 1327–1338 (2017).

    Article 

    Google Scholar
     

  • Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gregory, T. R. et al. Eukaryotic genome size databases. Nucleic Acids Res. 35, D332–D338 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Botero-Castro, F., Figuet, E., Tilak, M.-K., Nabholz, B. & Galtier, N. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol. Biol. Evol. 34, 3123–3131 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gregory, T. R. A bird’s-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56, 121–130 (2002).

    CAS 

    Google Scholar
     

  • Wright, N. A., Gregory, T. R. & Witt, C. C. Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc. Biol. Sci. 281, 20132780 (2014).


    Google Scholar
     

  • Wicker, T. et al. The repetitive landscape of the chicken genome. Genome Res. 15, 126–136 (2005).

    Article 

    Google Scholar
     

  • Kapusta, A. & Suh, A. Evolution of bird genomes-a transposon’s-eye view. Ann. NY Acad. Sci. 1389, 164–185 (2017).

    Article 

    Google Scholar
     

  • Chen, G. et al. Adaptive expansion of ERVK solo-LTRs is associated with passeriformes speciation events. Nat. Commun. 15, 3151 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Seki, R. et al. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 8, 14229 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, Y. & Lei, F. SLC2A12 of SLC2 gene family in bird provides functional compensation for the loss of SLC2A4 gene in other vertebrates. Mol. Biol. Evol. 38, 1276–1291 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).

    Article 

    Google Scholar
     

  • Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).

    Article 

    Google Scholar
     

  • Hieronymus, T. L. & Witmer, L. M. Homology and evolution of avian compound rhamphothecae. Auk 127, 590–604 (2010).

    Article 

    Google Scholar
     

  • Zhou, Z. & Zhang, F. Discovery of an ornithurine bird and its implication for early Cretaceous avian radiation. Proc. Natl Acad. Sci. USA 102, 18998–19002 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. & Zhang, F. A beaked basal ornithurine bird (Aves, Ornithurae) from the lower Cretaceous of China. Zool. Scr. 35, 363–373 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. & Li, F. Z. Z. A new lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. Biol. Sci. 277, 219–227 (2010).


    Google Scholar
     

  • Weber, C. et al. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science 368, 303–306 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z., Younas, L. & Zhou, Q. Evolution and regulation of animal sex chromosomes. Nat. Rev. Genet. 26, 59–74 (2025).

    Article 

    Google Scholar
     

  • Miller, D., Summers, J. & Silber, S. Environmental versus genetic sex determination: a possible factor in dinosaur extinction? Fertil. Steril. 81, 954–964 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).


    Google Scholar
     

  • Kennedy, J. D., Marki, P. Z., Fjeldså, J. & Rahbek, C. The association between morphological and ecological characters across a global passerine radiation. J. Anim. Ecol. 89, 1094–1108 (2020).

    Article 

    Google Scholar
     

  • Maglianesi, M. A., Blüthgen, N., Böhning-Gaese, K. & Schleuning, M. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95, 3325–3334 (2014).

    Article 

    Google Scholar
     

  • Madrigal-Roca, L. J. Assessing the predictive value of morphological traits on primary lifestyle of birds through the extreme gradient boosting algorithm. PLoS ONE 19, e0295182 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    Article 

    Google Scholar
     

  • Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2021).

    Article 

    Google Scholar
     

  • Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article 

    Google Scholar
     

  • Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lovette, I. J., Bermingham, E. & Ricklefs, R. E. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. Biol. Sci. 269, 37–42 (2002).

    Article 

    Google Scholar
     

  • Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. J. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).

    Article 

    Google Scholar
     

  • Eliason, C. M., Proffitt, J. V. & Clarke, J. A. Early diversification of avian limb morphology and the role of modularity in the locomotor evolution of crown birds. Evolution 77, 342–354 (2023).

    Article 

    Google Scholar
     

  • Olsen, A. M. Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct. Ecol. 31, 1985–1995 (2017).

    Article 

    Google Scholar
     

  • Smith, M. L., Yanega, G. M. & Ruina, A. Elastic instability model of rapid beak closure in hummingbirds. J. Theor. Biol. 282, 41–51 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Manegold, A. & Töpfer, T. The systematic position of Hemicircus and the stepwise evolution of adaptations for drilling, tapping and climbing up in true woodpeckers (Picinae, Picidae). J. Zool. Syst. Evol. Res. 51, 72–82 (2013).

    Article 

    Google Scholar
     

  • Savile, D. B. O. Adaptive evolution in the avian wing. Evolution 11, 212–224 (1957).

    Article 

    Google Scholar
     

  • Foth, C. & Rauhut, O. W. M. The Evolution of Feathers: from their Origin to the Present (Springer, 2020).

  • Claramunt, S., Derryberry, E. P., Remsen, J. V. Jr & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. Biol. Sci. 279, 1567–1574 (2012).


    Google Scholar
     

  • Arango, A. et al. Hand-wing index as a surrogate for dispersal ability: the case of the Emberizoidea (Aves: Passeriformes) radiation. Biol. J. Linn. Soc. Lond. 137, 137–144 (2022).

    Article 

    Google Scholar
     

  • Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).

    Article 

    Google Scholar
     

  • Yamasaki, T. & Kobayashi, Y. Evolving dispersal ability causes rapid adaptive radiation. Sci. Rep. 14, 15734 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Agnarsson, I., Cheng, R.-C. & Kuntner, M. A multi-clade test supports the intermediate dispersal model of biogeography. PLoS ONE 9, e86780 (2014).

    Article 

    Google Scholar
     

  • Edelsparre, A. H., Fitzpatrick, M. J., Saastamoinen, M. & Teplitsky, C. Evolutionary adaptation to climate change. Evol. Lett. 8, 1–7 (2024).

    Article 

    Google Scholar
     

  • Weeks, B. C. & Claramunt, S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. Biol. Sci. 281, 20141257 (2014).


    Google Scholar
     

  • Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–214 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl Acad. Sci. USA 101, 12224–12227 (2004).

    Article 

    Google Scholar
     

  • Valcu, M., Valcu, C. & Kempenaers, B. Extra-pair paternity and sexual dimorphism in birds. J. Evol. Biol. 36, 764–779 (2023).

    Article 

    Google Scholar
     

  • West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).

    Article 

    Google Scholar
     

  • Edelaar, P. in Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 195–215 (Springer, 2018).

  • Caron, F. S. & Pie, M. R. The macroevolution of sexual size dimorphism in birds. Biol. J. Linn. Soc. Lond. 144, blad168 (2024).

    Article 

    Google Scholar
     

  • Cally, J. G., Stuart-Fox, D., Holman, L., Dale, J. & Medina, I. Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution 75, 931–944 (2021).

    Article 

    Google Scholar
     

  • Darwin, C. The Descent of Man, and Selection in Relation to Sex (D. Appleton, 1872).

  • Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).

  • Carballo, L., Delhey, K., Valcu, M. & Kempenaers, B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J. Evol. Biol. 33, 1543–1557 (2020).

    Article 

    Google Scholar
     

  • Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 367, 2274–2293 (2012).

    Article 

    Google Scholar
     

  • Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Takagi, N. & Sasaki, M. A phylogenetic study of bird karyotypes. Chromosoma 46, 91–120 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Kretschmer, R., Ferguson-Smith, M. A. & de Oliveira, E. H. C. Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9, 181 (2018).

    Article 

    Google Scholar
     

  • McQueen, H. A., Siriaco, G. & Bird, A. P. Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res. 8, 621–630 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Knief, U. & Forstmeier, W. Mapping centromeres of microchromosomes in the zebra finch (Taeniopygia guttata) using half-tetrad analysis. Chromosoma 125, 757–768 (2016).

    Article 

    Google Scholar
     

  • Griffin, D. K. et al. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol. Cytogenet. 17, 24 (2024).

    Article 

    Google Scholar
     

  • Waters, P. D. et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl Acad. Sci. USA 118, e2112494118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Burt, D. W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 96, 97–112 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z. et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun. 13, 944 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat. Commun. 15, 1670 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Livernois, A. M., Graves, J. A. M. & Waters, P. D. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108, 50–58 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Smeds, L. et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6, 7330 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ponnikas, S., Sigeman, H., Abbott, J. K. & Hansson, B. Why do sex chromosomes stop recombining? Trends Genet. 34, 492–503 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rutkowska, J., Lagisz, M. & Nakagawa, S. The long and the short of avian W chromosomes: no evidence for gradual W shortening. Biol. Lett. 8, 636–638 (2012).

    Article 

    Google Scholar
     

  • Ogawa, A., Murata, K. & Mizuno, S. The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc. Natl Acad. Sci. USA 95, 4415–4418 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Tsuda, Y., Nishida-Umehara, C., Ishijima, J., Yamada, K. & Matsuda, Y. Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116, 159–173 (2007).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Temporal genomic evolution of bird sex chromosomes. BMC Evol. Biol. 14, 250 (2014).

    Article 

    Google Scholar
     

  • Zhou, Q. et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014).

    Article 

    Google Scholar
     

  • Nunes, G. T. et al. Sex determination and sexual size dimorphism in the red-billed tropicbird (Phaethon aethereus) and white-tailed tropicbird (P. lepturus). Waterbirds 36, 348–352 (2013).

    Article 

    Google Scholar
     

  • Gan, H. M. et al. Genomic evidence of neo-sex chromosomes in the eastern yellow robin. Gigascience 8, giz111 (2019).

    Article 

    Google Scholar
     

  • Sigeman, H. et al. Avian neo-sex chromosomes reveal dynamics of recombination suppression and W degeneration. Mol. Biol. Evol. 38, 5275–5291 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sigeman, H., Zhang, H., Ali Abed, S. & Hansson, B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J. Evol. Biol. 35, 1797–1805 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shogren, E. H. et al. Recent secondary contact, genome-wide admixture, and asymmetric introgression of neo-sex chromosomes between two Pacific island bird species. PLoS Genet. 20, e1011360 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gregory, T. R., Andrews, C. B., McGuire, J. A. & Witt, C. C. The smallest avian genomes are found in hummingbirds. Proc. Biol. Sci. 276, 3753–3757 (2009).

    CAS 

    Google Scholar
     

  • Ji, Y. et al. Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds. Sci. Adv. 8, eabo0099 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, H., Li, J. & Zhang, J. Molecular evidence for the loss of three basic tastes in penguins. Curr. Biol. 25, R141–R142 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jenouvrier, S. Impacts of climate change on avian populations. Glob. Change Biol. 19, 2036–2057 (2013).

    Article 

    Google Scholar
     

  • Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

    Article 

    Google Scholar
     

  • IPCC Working Group I. Climate Change 2013 — the Physical Science Basis. Contribution of Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).

  • WWF. Living Planet Report 2016. Risk and Resilience in a New Era (WWF International, 2016).

  • IUCN. IUCN 2016: International Union for Conservation of Nature Annual Report 2016 (IUCN, 2017).

  • Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).

    Article 

    Google Scholar
     

  • Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    Article 

    Google Scholar
     

  • Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article 

    Google Scholar
     

  • Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).

    Article 

    Google Scholar
     

  • McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Article 

    Google Scholar
     

  • Hadly, E. A., Kohn, M. H., Leonard, J. A. & Wayne, R. K. A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc. Natl Acad. Sci. USA 95, 6893–6896 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Bribiesca, R., Herrera-Alsina, L., Ruiz-Sanchez, E., Sánchez-González, L. A. & Schondube, J. E. Body mass as a supertrait linked to abundance and behavioral dominance in hummingbirds: a phylogenetic approach. Ecol. Evol. 9, 1623–1637 (2019).

    Article 

    Google Scholar
     

  • Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).

    Article 

    Google Scholar
     

  • White, E. P., Morgan Ernest, S. K., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).

    Article 

    Google Scholar
     

  • Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    Article 

    Google Scholar
     

  • Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).

    Article 

    Google Scholar
     

  • Bowman, R. I. Morphological Differentiation and Adaptation in the Galápagos Finches (Univ. California Press, 1961).

  • Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).

  • Timpane-Padgham, B. L., Beechie, T. & Klinger, T. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS ONE 12, e0173812 (2017).

    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Germain, R. R. et al. Changes in the functional diversity of modern bird species over the last million years. Proc. Natl Acad. Sci. USA 120, e2201945119 (2023).

    Article 

    Google Scholar
     

  • Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, H. E., Kidd, M. G., Moum, T. & Friesen, V. L. Polytomies and the power of phylogenetic inference. Evolution 53, 932–937 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258–265 (2007).

    Article 

    Google Scholar
     

  • Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rands, C. M. et al. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genom. 14, 95 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Stryjewski, K. F. & Sorenson, M. D. Mosaic genome evolution in a recent and rapid avian radiation. Nat. Ecol. Evol. 1, 1912–1922 (2017).

    Article 

    Google Scholar
     

  • Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).


    Google Scholar
     

  • Simons, A. M. The continuity of microevolution and macroevolution. J. Evol. Biol. 15, 688–701 (2002).

    Article 

    Google Scholar
     

  • Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design (Norton, 1896).

  • Wimsatt, W. C. Aggregativity: reductive heuristics for finding emergence. Phil. Sci. 64, S372–S384 (1997).

    Article 

    Google Scholar
     

  • Stanley, S. M. Macroevolution: Pattern and Process (W. H. Freeman, 1979).

  • Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Gould, S. J. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2–12 (1985).

    Article 

    Google Scholar
     

  • Bennett, K. D. Evolution and Ecology: The Pace of Life (Cambridge Univ. Press, 1997).

  • Fain, M. G. & Houde, P. Parallel radiations in the primary clades of birds. Evolution 58, 2558–2573 (2004).


    Google Scholar
     

  • Padian, K. & Chiappe, L. M. The origin and early evolution of birds. Biol. Rev. 73, 1–42 (1998).

    Article 

    Google Scholar
     

  • Senter, P. Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontol. Pol. 51, 305–313 (2006).


    Google Scholar
     

  • Ahmad, S. F., Singchat, W., Jehangir, M., Panthum, T. & Srikulnath, K. Consequence of paradigm shift with repeat landscapes in reptiles: powerful facilitators of chromosomal rearrangements for diversity and evolution. Genes 11, 827 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img