Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).
Haas, O. & Simpson, G. Analysis of some phylogenetic terms, with attempts at redefinition. Proc. Am. Phil. Soc. 90, 319–349 (1946).
Mayr, E. What Evolution Is (Basic Books, 2001).
Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).
Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
Futuyma, D. J. Ecology, speciation, and adaptive radiation: the long view. Evolution 62, 2446–2449 (2008).
Schweber, S. S. Darwin and the political economists: divergence of character. J. Hist. Biol. 13, 195–289 (1980).
Rieseberg, L. H., Archer, M. A. & Wayne, R. K. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).
Baker, J. M. Adaptive speciation: the role of natural selection in mechanisms of geographic and non-geographic speciation. Stud. Hist. Phil. Biol. Biomed. Sci. 36, 303–326 (2005).
Grant, P. R. & Grant, B. R. Adaptive radiation of Darwin’s finches: recent data help explain how this famous group of Galápagos birds evolved, although gaps in our understanding remain. Am. Sci. 90, 130–139 (2002).
Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M. & Fleischer, R. C. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Curr. Biol. 21, 1838–1844 (2011).
Losos, J. B., Glor, R. E., Kolbe, J. J. & Nicholson, K. Adaptation, speciation, and convergence: a hierarchical analysis of adaptive radiation in Caribbean Anolis lizards. Ann. Mo. Bot. Gard. 93, 24–33 (2006).
Seehausen, O. African cichlid fish: a model system in adaptive radiation research. Proc. Biol. Sci. 273, 1987–1998 (2006).
Briggs, D. E. G. The Cambrian explosion. Curr. Biol. 25, R864–R868 (2015).
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
Yang, A. S. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol. Dev. 3, 59–72 (2001).
Feduccia, A. Explosive evolution in tertiary birds and mammals. Science 267, 637–638 (1995).
Gill, F., Donsker, D. & Rasmussen, P. (eds). IOC World Bird List (v 15.1). International Ornithological Congress http://www.worldbirdnames.org/ (2025).
Owen, P. III On the archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Phil. Trans. R. Soc. Lond. 153, 33–47 (1863).
Chen, P. J., Dong, Z. M. & Zhen, S. N. An exceptionally well-preserved theropod dinosaur from the Yixian formation of China. Nature 391, 147–152 (1998).
Ji, Q. & Ji, S. A. On the discovery of the earliest bird fossil in China (Sinosauropteryx gen. nov.) and the origin of birds. Chin. Geol. 233, 30–33 (1996).
Dyke, G. J. & Nudds, R. L. The fossil record and limb disparity of enantiornithines, the dominant flying birds of the Cretaceous. Lethaia 42, 248–254 (2009).
Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).
Cooper, A. & Penny, D. Mass survival of birds across the Cretaceous–Tertiary boundary: molecular evidence. Science 275, 1109–1113 (1997).
Brown, J. W., Rest, J. S., García-Moreno, J., Sorenson, M. D. & Mindell, D. P. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 6, 6 (2008).
Wu, S. et al. Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proc. Natl Acad. Sci. USA 121, e2319696121 (2024).
Feduccia, A. ‘Big bang’ for tertiary birds? Trends Ecol. Evol. 18, 172–176 (2003).
Claramunt, S. & Cracraft, J. A new time tree reveals earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).
Field, D. J. et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831.e2 (2018).
Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).
McCormack, J. E. et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 8, e54848 (2013).
Brown, J. W., Wang, N. & Smith, S. A. The development of scientific consensus: analyzing conflict and concordance among avian phylogenies. Mol. Phylogenet. Evol. 116, 69–77 (2017).
Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).
Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).
Suh, A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool. Scr. 45, 50–62 (2016).
Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 13, e1002224 (2015).
Barker, F. K., Cibois, A., Schikler, P., Feinstein, J. & Cracraft, J. Phylogeny and diversification of the largest avian radiation. Proc. Natl Acad. Sci. USA 101, 11040–11045 (2004).
Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).
Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).
Campagna, L. & Toews, D. P. L. The genomics of adaptation in birds. Curr. Biol. 32, R1173–R1186 (2022).
Tobias, J. A., Ottenburghs, J. & Pigot, A. L. Avian diversity: speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 51, 533–560 (2020).
Berv, J. S. et al. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. Sci. Adv. 10, eadp0114 (2024).
Sheldon, F. H. & Bledsoe, A. H. Avian molecular systematics, 1970s to 1990s. Annu. Rev. Ecol. Syst. 24, 243–278 (1993).
Wink, M. in Avian Genomics in Ecology and Evolution: From the Lab into the Wild (ed. Kraus, R. H. S.) 7–19 (Springer, 2019).
Cracraft, J. et al. in Assembling the Tree of Life (eds Cracraft, J. & Donoghue, M. J.) 468–489 (Oxford Univ. Press, 2004).
Zhang, G. et al. Comparative genomic data of the avian phylogenomics project. Gigascience 3, 26 (2014).
Armstrong, J. et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).
Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
Kuhl, H. et al. An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life. Mol. Biol. Evol. 38, 108–127 (2021).
Bejerano, G. et al. Ultraconserved elements in the human genome. Science 304, 1321–1325 (2004).
Margulies, E. H., Blanchette, M., NISC Comparative Sequencing Program Haussler, D. & Green, E. D. Identification and characterization of multi-species conserved sequences. Genome Res. 13, 2507–2518 (2003).
Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).
Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).
Hosner, P. A., Faircloth, B. C., Glenn, T. C., Braun, E. L. & Kimball, R. T. Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). Mol. Biol. Evol. 33, 1110–1125 (2016).
Batista, R. et al. Phylogenomics and biogeography of the world’s thrushes (Aves, Turdus): new evidence for a more parsimonious evolutionary history. Proc. Biol. Sci. 287, 20192400 (2020).
McCullough, J. M., Joseph, L., Moyle, R. G. & Andersen, M. J. Ultraconserved elements put the final nail in the coffin of traditional use of the genus Meliphaga (Aves: Meliphagidae). Zool. Scr. 48, 411–418 (2019).
Tsai, W. L. E. et al. Museum genomics reveals the speciation history of Dendrortyx wood-partridges in the Mesoamerican highlands. Mol. Phylogenet. Evol. 136, 29–34 (2019).
Kirchman, J. J. et al. Phylogeny based on ultra-conserved elements clarifies the evolution of rails and allies (Ralloidea) and is the basis for a revised classification. Ornithology 138, ukab042 (2021).
Andersen, M. J. et al. Ultraconserved elements resolve genus-level relationships in a major Australasian bird radiation (Aves: Meliphagidae). EMU Aust. Orn. 119, 218–232 (2019).
Hruska, J. P. et al. Ultraconserved elements resolve the phylogeny and corroborate patterns of molecular rate variation in herons (Aves: Ardeidae). Ornithology 140, ukad005 (2023).
Schield, D. R. et al. Phylogeny and historical biogeography of the swallow family (Hirundinidae) inferred from comparisons of thousands of UCE loci. Mol. Phylogenet. Evol. 197, 108111 (2024).
Kimball, R. T., Hosner, P. A. & Braun, E. L. A phylogenomic supermatrix of Galliformes (landfowl) reveals biased branch lengths. Mol. Phylogenet. Evol. 158, 107091 (2021).
McCullough, J. M., Moyle, R. G., Smith, B. T. & Andersen, M. J. A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes). Proc. Biol. Sci. 286, 20190122 (2019).
Nabholz, B., Künstner, A., Wang, R., Jarvis, E. D. & Ellegren, H. Dynamic evolution of base composition: causes and consequences in avian phylogenomics. Mol. Biol. Evol. 28, 2197–2210 (2011).
Zhang, G. et al. Genomics: bird sequencing project takes off. Nature 522, 34 (2015).
Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution: From the Lab into the Wild (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).
Bravo, G. A., Schmitt, C. J. & Edwards, S. V. What have we learned from the first 500 avian genomes? Annu. Rev. Ecol. Evol. Syst. 52, 611–639 (2021).
Reddy, S. et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66, 857–879 (2017).
Braun, E. L. & Kimball, R. T. Data types and the phylogeny of Neoaves. Birds 2, 1–22 (2021).
Gibb, G. C., Kardailsky, O., Kimball, R. T., Braun, E. L. & Penny, D. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24, 269–280 (2007).
Guillerme, T. et al. Innovation and elaboration on the avian tree of life. Sci. Adv. 9, eadg1641 (2023).
Mirarab, S. et al. A region of suppressed recombination misleads neoavian phylogenomics. Proc. Natl Acad. Sci. USA 121, e2319506121 (2024).
Degnan, J. H. & Salter, L. A. Gene tree distributions under the coalescent process. Evolution 59, 24–37 (2005).
Slatkin, M. & Pollack, J. L. Subdivision in an ancestral species creates asymmetry in gene trees. Mol. Biol. Evol. 25, 2241–2246 (2008).
Hoelzer, G. A. & Meinick, D. J. Patterns of speciation and limits to phylogenetic resolution. Trends Ecol. Evol. 9, 104–107 (1994).
Gatesy, J. & Springer, M. S. Phylogenomic coalescent analyses of avian retroelements infer zero-length branches at the base of Neoaves, emergent support for controversial clades, and ancient introgressive hybridization in Afroaves. Genes 13, 1167 (2022).
Zhang, D. et al. Most genomic loci misrepresent the phylogeny of an avian radiation because of ancient gene flow. Syst. Biol. 70, 961–975 (2021).
Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).
Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).
Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594–599 (2019).
Singhal, S. et al. The dynamics of introgression across an avian radiation. Evol. Lett. 5, 568–581 (2021).
Cole, T. L. et al. Genomic insights into the secondary aquatic transition of penguins. Nat. Commun. 13, 3912 (2022).
Ottenburghs, J. et al. Avian introgression in the genomic era. Avian Res. 8, 30 (2017).
Ottenburghs, J., Ydenberg, R. C., Van Hooft, P., Van Wieren, S. E. & Prins, H. H. T. The avian hybrids project: gathering the scientific literature on avian hybridization. Ibis 157, 892–894 (2015).
Lanier, H. C. & Knowles, L. L. Is recombination a problem for species-tree analyses? Syst. Biol. 61, 691–701 (2012).
Liu, L. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24, 2542–2543 (2008).
Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2010).
McCormack, J. E., Huang, H. & Knowles, L. L. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design. Syst. Biol. 58, 501–508 (2009).
Forsberg, R., Drummond, A. J. & Hein, J. Tree measures and the number of segregating sites in time-structured population samples. BMC Genet. 6, 35 (2005).
Steenwyk, J. L., Li, Y., Zhou, X., Shen, X.-X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834–850 (2023).
Whelan, S. The genetic code can cause systematic bias in simple phylogenetic models. Phil. Trans. R. Soc. B 363, 4003–4011 (2008).
Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).
Felsenstein, J. Distance methods for inferring phylogenies: a justification. Evolution 38, 16–24 (1984).
Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).
Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596 (2010).
Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).
Schenk, J. J., Rowe, K. C. & Steppan, S. J. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62, 837–864 (2013).
Burbrink, F. T., Ruane, S. & Pyron, R. A. When are adaptive radiations replicated in areas? Ecological opportunity and unexceptional diversification in West Indian dipsadine snakes (Colubridae: Alsophiini). J. Biogeogr. 39, 465–475 (2012).
Mitchell, K. J., Cooper, A. & Phillips, M. J. Comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460 (2015).
Cracraft, J. et al. Response to comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460 (2015).
Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).
Morgan, J. V., Bralower, T. J., Brugger, J. & Wünnemann, K. The Chicxulub impact and its environmental consequences. Nat. Rev. Earth Environ. 3, 338–354 (2022).
Senel, C. B. et al. Chicxulub impact winter sustained by fine silicate dust. Nat. Geosci. 16, 1033–1040 (2023).
Schoene, B. et al. U–Pb constraints on pulsed eruption of the Deccan traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).
Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary. Science 363, 866–870 (2019).
Paton, T., Haddrath, O. & Baker, A. J. Complete mitochondrial DNA genome sequences show that modern birds are not descended from transitional shorebirds. Proc. Biol. Sci. 269, 839–846 (2002).
Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl Acad. Sci. USA 99, 8139–8144 (2002).
Houde, P., Braun, E. L. & Zhou, L. Deep-time demographic inference suggests ecological release as driver of neoavian adaptive radiation. Diversity 12, 164 (2020).
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).
Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 111, 7537–7541 (2014).
Gallagher, W. B. et al. On the last mosasaurs: late maastrichtian mosasaurs and the Cretaceous–Paleogene boundary in New Jersey. Bull. Soc. Geol. Fr. 183, 145–150 (2012).
D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).
Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).
Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K–Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).
Sheehan, P. M. & Fastovsky, D. E. Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20, 556–560 (1992).
Archibald, D. J. & Bryant, L. J. in Global Catastrophes in Earth History; an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality 549–562 (GeoScienceWorld, 1990).
MacLeod, N. et al. The Cretaceous–Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).
Feduccia, A. Avian extinction at the end of the Cretaceous: assessing the magnitude and subsequent explosive radiation. Cretac. Res. 50, 1–15 (2014).
Olson, S. L. & Parris, D. C. The Cretaceous Birds of New Jersey (Smithsonian Institution, 1987).
Feduccia, A. Tertiary bird history: notes and comments. Short Courses Paleontol. 7, 179–189 (1994).
Feduccia, A. The Origin and Evolution of Birds (Yale Univ. Press, 1996).
Mayr, G. Paleogene Fossil Birds (Springer, 2009).
Mayr, E. Ecological factors in speciation. Evolution 1, 263 (1947).
Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, 1937).
Wu, A. C. & Palopoli, M. Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet. 28, 283–308 (1994).
Manuel, S. & Liu, Y. in Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 129–145 (Springer, 2018).
Upchurch, P. Gondwanan break-up: legacies of a lost world? Trends Ecol. Evol. 23, 229–236 (2008).
Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996).
Illera, J. C., Rando, J. C., Melo, M., Valente, L. & Stervander, M. Avian island radiations shed light on the dynamics of adaptive and nonadaptive radiation. Cold Spring Harb. Persp. Biol. 16, a041451 (2024).
Glor, R. E. Remarkable new evidence for island radiation in birds. Mol. Ecol. 20, 4823–4826 (2011).
Oliveros, C. H. et al. Rapid Laurasian diversification of a pantropical bird family during the Oligocene–Miocene transition. Ibis 162, 137–152 (2020).
Moyle, R. G. et al. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat. Commun. 7, 12709 (2016).
McLoughlin, S. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust. J. Bot. 49, 271 (2001).
Cracraft, J. Avian evolution, Gondwana biogeography and the Cretaceous–Tertiary mass extinction event. Proc. Biol. Sci. 268, 459–469 (2001).
Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).
Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).
Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).
Dumont, E. R. et al. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. Biol. Sci. 279, 1797–1805 (2012).
Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).
Martin, C. H. & Richards, E. J. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? Annu. Rev. Ecol. Evol. Syst. 50, 569–593 (2019).
Jablonski, D. Evolvability and macroevolution: overview and synthesis. Evol. Biol. 49, 265–291 (2022).
Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. N. Phytol. 207, 260–274 (2015).
Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).
Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell, 2001).
Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391.e14 (2021).
Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).
Zhou, Z. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Sci. Nat. 91, 455–471 (2004).
Wang, X. et al. Insights into the evolution of rachis dominated tail feathers from a new basal enantiornithine (Aves: Ornithothoraces). Biol. J. Linn. Soc. Lond. 113, 805–819 (2014).
Zhou, Z. Dinosaur evolution: feathers up for selection. Curr. Biol. 24, R751–R753 (2014).
Brush, A. H. Evolving a protofeather and feather diversity. Am. Zool. 40, 631–639 (2000).
Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).
Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).
Orkney, A. & Hedrick, B. P. Small body size is associated with increased evolutionary lability of wing skeleton proportions in birds. Nat. Commun. 15, 4208 (2024).
Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).
Newton, I. The role of food in limiting bird numbers. Ardea 55, 11–30 (2002).
Blanckenhorn, W. U. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000).
Gaston, K. & Blackburn, T. Birds, body size and the threat of extinction. Phil. Trans. R. Soc. B 347, 205–212 (1995).
Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).
Moen, D. & Morlon, H. From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation. PLoS Biol. 12, e1001854 (2014).
Wang, M., O’Connor, J. K., Xu, X. & Zhou, Z. A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569, 256–259 (2019).
Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).
Wang, M. & Zhou, Z. Low morphological disparity and decelerated rate of limb size evolution close to the origin of birds. Nat. Ecol. Evol. 7, 1257–1266 (2023).
Chan, N. R. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs. Proc. Biol. Sci. 284, 20171556 (2017).
Wang, S. et al. Digital restoration of the pectoral girdles of two early Cretaceous birds and implications for early-flight evolution. eLife 11, e76086 (2022).
Bout, R. G. & Zweers, G. A. The role of cranial kinesis in birds. Comp. Biochem. Physiol. A 131, 197–205 (2001).
Lautenschlager, S., Witmer, L. M., Altangerel, P. & Rayfield, E. J. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc. Natl Acad. Sci. USA 110, 20657–20662 (2013).
Huxley, T. H. On the classification of birds; and on the taxonomic value of the modifications of certain of the cranial bones observed in that class. J. Anat. Physiol. 2, 390 (1867).
Gussekloo, S. W., Vosselman, M. G. & Bout, R. G. Three-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry. J. Exp. Biol. 204, 1735–1744 (2001).
Zusi, R. L. Patterns of diversity in the avian skull. Skull 2, 391–437 (1993).
Field, D. J., Burton, M. G., Benito, J., Plateau, O. & Navalón, G. Whence the birds: 200 years of dinosaurs, avian antecedents. Biol. Lett. 21, 20240500 (2025).
Benito, J., Kuo, P.-C., Widrig, K. E., Jagt, J. W. M. & Field, D. J. Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 612, 100–105 (2022).
Zweers, G. A. Pecking of the pigeon (Columba Livia L.). Behaviour 81, 173–229 (1982).
Zusi, R. L. A functional and evolutionary analysis of rhynchokinesis in birds. Smithson. Contrib. Zool. 395, 1–40 (1984).
Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).
Sheard, C. et al. Beak shape and nest material use in birds. Phil. Trans. R. Soc. B 378, 20220147 (2023).
Widrig, K. & Field, D. J. The evolution and fossil record of palaeognathous birds (Neornithes: Palaeognathae). Diversity 14, 105 (2022).
Zweers, G. A., Berge, J. C. V. & Berkhoudt, H. Evolutionary patterns of avian trophic diversification. Zool. Anal. Complex. Syst. 100, 25–57 (1997).
Wang, M., Stidham, T. A., O’Connor, J. K. & Zhou, Z. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird. eLife 11, e81337 (2022).
Hu, H. et al. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc. Natl Acad. Sci. USA 116, 19571–19578 (2019).
Field, D. J., Benito, J., Chen, A., Jagt, J. W. M. & Ksepka, D. T. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401 (2020).
Yu, Y., Zhang, C. & Xu, X. Deep time diversity and the early radiations of birds. Proc. Natl Acad. Sci. USA 118, e2019865118 (2021).
Gussekloo, S. W. S. et al. Functional and evolutionary consequences of cranial fenestration in birds. Evolution 71, 1327–1338 (2017).
Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).
Gregory, T. R. et al. Eukaryotic genome size databases. Nucleic Acids Res. 35, D332–D338 (2007).
Botero-Castro, F., Figuet, E., Tilak, M.-K., Nabholz, B. & Galtier, N. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol. Biol. Evol. 34, 3123–3131 (2017).
Gregory, T. R. A bird’s-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56, 121–130 (2002).
Wright, N. A., Gregory, T. R. & Witt, C. C. Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc. Biol. Sci. 281, 20132780 (2014).
Wicker, T. et al. The repetitive landscape of the chicken genome. Genome Res. 15, 126–136 (2005).
Kapusta, A. & Suh, A. Evolution of bird genomes-a transposon’s-eye view. Ann. NY Acad. Sci. 1389, 164–185 (2017).
Chen, G. et al. Adaptive expansion of ERVK solo-LTRs is associated with passeriformes speciation events. Nat. Commun. 15, 3151 (2024).
Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).
Seki, R. et al. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 8, 14229 (2017).
Xiong, Y. & Lei, F. SLC2A12 of SLC2 gene family in bird provides functional compensation for the loss of SLC2A4 gene in other vertebrates. Mol. Biol. Evol. 38, 1276–1291 (2021).
Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).
Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).
Hieronymus, T. L. & Witmer, L. M. Homology and evolution of avian compound rhamphothecae. Auk 127, 590–604 (2010).
Zhou, Z. & Zhang, F. Discovery of an ornithurine bird and its implication for early Cretaceous avian radiation. Proc. Natl Acad. Sci. USA 102, 18998–19002 (2005).
Zhou, Z. & Zhang, F. A beaked basal ornithurine bird (Aves, Ornithurae) from the lower Cretaceous of China. Zool. Scr. 35, 363–373 (2006).
Zhou, Z. & Li, F. Z. Z. A new lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. Biol. Sci. 277, 219–227 (2010).
Weber, C. et al. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b. Science 368, 303–306 (2020).
Zhu, Z., Younas, L. & Zhou, Q. Evolution and regulation of animal sex chromosomes. Nat. Rev. Genet. 26, 59–74 (2025).
Miller, D., Summers, J. & Silber, S. Environmental versus genetic sex determination: a possible factor in dinosaur extinction? Fertil. Steril. 81, 954–964 (2004).
Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).
Kennedy, J. D., Marki, P. Z., Fjeldså, J. & Rahbek, C. The association between morphological and ecological characters across a global passerine radiation. J. Anim. Ecol. 89, 1094–1108 (2020).
Maglianesi, M. A., Blüthgen, N., Böhning-Gaese, K. & Schleuning, M. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95, 3325–3334 (2014).
Madrigal-Roca, L. J. Assessing the predictive value of morphological traits on primary lifestyle of birds through the extreme gradient boosting algorithm. PLoS ONE 19, e0295182 (2024).
Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).
Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2021).
Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).
Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).
Lovette, I. J., Bermingham, E. & Ricklefs, R. E. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. Biol. Sci. 269, 37–42 (2002).
Chira, A. M. et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol. Lett. 21, 1505–1514 (2018).
Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. J. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).
Eliason, C. M., Proffitt, J. V. & Clarke, J. A. Early diversification of avian limb morphology and the role of modularity in the locomotor evolution of crown birds. Evolution 77, 342–354 (2023).
Olsen, A. M. Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct. Ecol. 31, 1985–1995 (2017).
Smith, M. L., Yanega, G. M. & Ruina, A. Elastic instability model of rapid beak closure in hummingbirds. J. Theor. Biol. 282, 41–51 (2011).
Manegold, A. & Töpfer, T. The systematic position of Hemicircus and the stepwise evolution of adaptations for drilling, tapping and climbing up in true woodpeckers (Picinae, Picidae). J. Zool. Syst. Evol. Res. 51, 72–82 (2013).
Savile, D. B. O. Adaptive evolution in the avian wing. Evolution 11, 212–224 (1957).
Foth, C. & Rauhut, O. W. M. The Evolution of Feathers: from their Origin to the Present (Springer, 2020).
Claramunt, S., Derryberry, E. P., Remsen, J. V. Jr & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. Biol. Sci. 279, 1567–1574 (2012).
Arango, A. et al. Hand-wing index as a surrogate for dispersal ability: the case of the Emberizoidea (Aves: Passeriformes) radiation. Biol. J. Linn. Soc. Lond. 137, 137–144 (2022).
Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).
Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).
Yamasaki, T. & Kobayashi, Y. Evolving dispersal ability causes rapid adaptive radiation. Sci. Rep. 14, 15734 (2024).
Agnarsson, I., Cheng, R.-C. & Kuntner, M. A multi-clade test supports the intermediate dispersal model of biogeography. PLoS ONE 9, e86780 (2014).
Edelsparre, A. H., Fitzpatrick, M. J., Saastamoinen, M. & Teplitsky, C. Evolutionary adaptation to climate change. Evol. Lett. 8, 1–7 (2024).
Weeks, B. C. & Claramunt, S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. Biol. Sci. 281, 20141257 (2014).
Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–214 (2008).
Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl Acad. Sci. USA 101, 12224–12227 (2004).
Valcu, M., Valcu, C. & Kempenaers, B. Extra-pair paternity and sexual dimorphism in birds. J. Evol. Biol. 36, 764–779 (2023).
West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).
Edelaar, P. in Bird Species: How They Arise, Modify and Vanish (ed. Tietze, D. T.) 195–215 (Springer, 2018).
Caron, F. S. & Pie, M. R. The macroevolution of sexual size dimorphism in birds. Biol. J. Linn. Soc. Lond. 144, blad168 (2024).
Cally, J. G., Stuart-Fox, D., Holman, L., Dale, J. & Medina, I. Male-biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution 75, 931–944 (2021).
Darwin, C. The Descent of Man, and Selection in Relation to Sex (D. Appleton, 1872).
Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).
Carballo, L., Delhey, K., Valcu, M. & Kempenaers, B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J. Evol. Biol. 33, 1543–1557 (2020).
Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).
Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Phil. Trans. R. Soc. B 367, 2274–2293 (2012).
Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).
Takagi, N. & Sasaki, M. A phylogenetic study of bird karyotypes. Chromosoma 46, 91–120 (1974).
Kretschmer, R., Ferguson-Smith, M. A. & de Oliveira, E. H. C. Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9, 181 (2018).
McQueen, H. A., Siriaco, G. & Bird, A. P. Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. Genome Res. 8, 621–630 (1998).
Knief, U. & Forstmeier, W. Mapping centromeres of microchromosomes in the zebra finch (Taeniopygia guttata) using half-tetrad analysis. Chromosoma 125, 757–768 (2016).
Griffin, D. K. et al. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol. Cytogenet. 17, 24 (2024).
Waters, P. D. et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl Acad. Sci. USA 118, e2112494118 (2021).
Burt, D. W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 96, 97–112 (2002).
Huang, Z. et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun. 13, 944 (2022).
Xu, L. et al. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat. Commun. 15, 1670 (2024).
Livernois, A. M., Graves, J. A. M. & Waters, P. D. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108, 50–58 (2012).
Smeds, L. et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6, 7330 (2015).
Ponnikas, S., Sigeman, H., Abbott, J. K. & Hansson, B. Why do sex chromosomes stop recombining? Trends Genet. 34, 492–503 (2018).
Rutkowska, J., Lagisz, M. & Nakagawa, S. The long and the short of avian W chromosomes: no evidence for gradual W shortening. Biol. Lett. 8, 636–638 (2012).
Ogawa, A., Murata, K. & Mizuno, S. The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proc. Natl Acad. Sci. USA 95, 4415–4418 (1998).
Tsuda, Y., Nishida-Umehara, C., Ishijima, J., Yamada, K. & Matsuda, Y. Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116, 159–173 (2007).
Wang, Z. et al. Temporal genomic evolution of bird sex chromosomes. BMC Evol. Biol. 14, 250 (2014).
Zhou, Q. et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014).
Nunes, G. T. et al. Sex determination and sexual size dimorphism in the red-billed tropicbird (Phaethon aethereus) and white-tailed tropicbird (P. lepturus). Waterbirds 36, 348–352 (2013).
Gan, H. M. et al. Genomic evidence of neo-sex chromosomes in the eastern yellow robin. Gigascience 8, giz111 (2019).
Sigeman, H. et al. Avian neo-sex chromosomes reveal dynamics of recombination suppression and W degeneration. Mol. Biol. Evol. 38, 5275–5291 (2021).
Sigeman, H., Zhang, H., Ali Abed, S. & Hansson, B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J. Evol. Biol. 35, 1797–1805 (2022).
Shogren, E. H. et al. Recent secondary contact, genome-wide admixture, and asymmetric introgression of neo-sex chromosomes between two Pacific island bird species. PLoS Genet. 20, e1011360 (2024).
Gregory, T. R., Andrews, C. B., McGuire, J. A. & Witt, C. C. The smallest avian genomes are found in hummingbirds. Proc. Biol. Sci. 276, 3753–3757 (2009).
Ji, Y. et al. Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds. Sci. Adv. 8, eabo0099 (2022).
Zhao, H., Li, J. & Zhang, J. Molecular evidence for the loss of three basic tastes in penguins. Curr. Biol. 25, R141–R142 (2015).
Jenouvrier, S. Impacts of climate change on avian populations. Glob. Change Biol. 19, 2036–2057 (2013).
Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).
IPCC Working Group I. Climate Change 2013 — the Physical Science Basis. Contribution of Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).
WWF. Living Planet Report 2016. Risk and Resilience in a New Era (WWF International, 2016).
IUCN. IUCN 2016: International Union for Conservation of Nature Annual Report 2016 (IUCN, 2017).
Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).
Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).
Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
Mason, L. R. et al. Population responses of bird populations to climate change on two continents vary with species’ ecological traits but not with direction of change in climate suitability. Clim. Change 157, 337–354 (2019).
McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
Hadly, E. A., Kohn, M. H., Leonard, J. A. & Wayne, R. K. A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc. Natl Acad. Sci. USA 95, 6893–6896 (1998).
Finkel, Z. V., Katz, M. E., Wright, J. D., Schofield, O. M. E. & Falkowski, P. G. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc. Natl Acad. Sci. USA 102, 8927–8932 (2005).
Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).
Bribiesca, R., Herrera-Alsina, L., Ruiz-Sanchez, E., Sánchez-González, L. A. & Schondube, J. E. Body mass as a supertrait linked to abundance and behavioral dominance in hummingbirds: a phylogenetic approach. Ecol. Evol. 9, 1623–1637 (2019).
Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).
White, E. P., Morgan Ernest, S. K., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).
Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).
Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).
Bowman, R. I. Morphological Differentiation and Adaptation in the Galápagos Finches (Univ. California Press, 1961).
Grant, P. R. Ecology and Evolution of Darwin’s Finches (Princeton Univ. Press, 1999).
Timpane-Padgham, B. L., Beechie, T. & Klinger, T. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS ONE 12, e0173812 (2017).
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
Germain, R. R. et al. Changes in the functional diversity of modern bird species over the last million years. Proc. Natl Acad. Sci. USA 120, e2201945119 (2023).
Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).
Walsh, H. E., Kidd, M. G., Moum, T. & Friesen, V. L. Polytomies and the power of phylogenetic inference. Evolution 53, 932–937 (1999).
Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258–265 (2007).
Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).
Rands, C. M. et al. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genom. 14, 95 (2013).
Stryjewski, K. F. & Sorenson, M. D. Mosaic genome evolution in a recent and rapid avian radiation. Nat. Ecol. Evol. 1, 1912–1922 (2017).
Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).
Simons, A. M. The continuity of microevolution and macroevolution. J. Evol. Biol. 15, 688–701 (2002).
Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design (Norton, 1896).
Wimsatt, W. C. Aggregativity: reductive heuristics for finding emergence. Phil. Sci. 64, S372–S384 (1997).
Stanley, S. M. Macroevolution: Pattern and Process (W. H. Freeman, 1979).
Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000).
Gould, S. J. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11, 2–12 (1985).
Bennett, K. D. Evolution and Ecology: The Pace of Life (Cambridge Univ. Press, 1997).
Fain, M. G. & Houde, P. Parallel radiations in the primary clades of birds. Evolution 58, 2558–2573 (2004).
Padian, K. & Chiappe, L. M. The origin and early evolution of birds. Biol. Rev. 73, 1–42 (1998).
Senter, P. Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontol. Pol. 51, 305–313 (2006).
Ahmad, S. F., Singchat, W., Jehangir, M., Panthum, T. & Srikulnath, K. Consequence of paradigm shift with repeat landscapes in reptiles: powerful facilitators of chromosomal rearrangements for diversity and evolution. Genes 11, 827 (2020).
Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).