Plant diversity dynamics over space and time in a warming Arctic


  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).

    Article 

    Google Scholar
     

  • García Criado, M., Myers‐Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).

    Article 

    Google Scholar
     

  • Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol. 15, 1153–1172 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hamilton, C. W. et al. Predicting the suitable habitat distribution of berry plants under climate change. Landsc. Ecol. 39, 18 (2024).

    Article 

    Google Scholar
     

  • IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES Secretariat, 2019).

  • Antão, L. H. et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat. Ecol. Evol. 4, 927–933 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, B. G., Song, Y., Feeley, K. J. & Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 24, 1697–1708 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdez, J. W. et al. The undetectability of global biodiversity trends using local species richness. Ecography 2023, e06604 (2023).

    Article 

    Google Scholar
     

  • Nabe‐Nielsen, J. et al. Plant community composition and species richness in the High Arctic tundra: from the present to the future. Ecol. Evol. 7, 10233–10242 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography 41, 900–909 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Niskanen, A. K. J., Niittynen, P., Aalto, J., Väre, H. & Luoto, M. Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Divers. Distrib. 25, 809–821 (2019).

    Article 

    Google Scholar
     

  • Elmendorf, S. C. & Hollister, R. D. Limits on phenological response to high temperature in the Arctic. Sci. Rep. 13, 208 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pajunen, A. M., Oksanen, J. & Virtanen, R. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J. Veg. Sci. 22, 837–846 (2011).

    Article 

    Google Scholar
     

  • Boscutti, F. et al. Shrub growth and plant diversity along an elevation gradient: evidence of indirect effects of climate on alpine ecosystems. PLoS ONE 13, e0196653 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 1807).

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wipf, S., Stöckli, V., Herz, K. & Rixen, C. The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol. Divers. 6, 447–455 (2013).

    Article 

    Google Scholar
     

  • Körner, C. Concepts in Alpine plant ecology. Plants 12, 2666 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie, J. F., Roland, C. A., Stehn, S. E. & Smirnova, E. Variability in the expansion of trees and shrubs in boreal Alaska. Ecology 100, e02660 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Article 

    Google Scholar
     

  • McGraw, J. B. et al. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. Glob. Chang. Biol. 21, 3827–3835 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chapin, F. S., Bret‐Harte, M. S., Hobbie, S. E. & Zhong, H. Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci. 7, 347–358 (1996).

    Article 

    Google Scholar
     

  • Prager, C. M. et al. A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia 192, 671–685 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Blowes, S. A. et al. Synthesis reveals approximately balanced biotic differentiation and homogenization. Sci. Adv. 10, eadj9395 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niittynen, P., Heikkinen, R. K. & Luoto, M. Decreasing snow cover alters functional composition and diversity of Arctic tundra. Proc. Natl Acad. Sci. USA 117, 21480–21487 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, L., Simonsen, C. E., Svenning, J.-C., Schmidt, N. M. & Pellissier, L. Forecasted homogenization of high Arctic vegetation communities under climate change. J. Biogeogr. 45, 2576–2587 (2018).

    Article 

    Google Scholar
     

  • Kitagawa, R. et al. Positive interaction facilitates landscape homogenization by shrub expansion in the forest–tundra ecotone. J. Veg. Sci. 31, 234–244 (2020).

    Article 

    Google Scholar
     

  • van der Kolk, H. J., Heijmans, M., van Huissteden, J., Pullens, J. W. M. & Berendse, F. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13, 6229–6245 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Holtmeier, F. & Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 14, 395–410 (2005).

    Article 

    Google Scholar
     

  • Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).

    Article 

    Google Scholar
     

  • Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Post, E. et al. Large herbivore diversity slows sea ice-associated decline in arctic tundra diversity. Science 380, 1282–1287 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Trindade, D. P. F., Carmona, C. P. & Pärtel, M. Temporal lags in observed and dark diversity in the Anthropocene. Glob. Chang. Biol. 26, 3193–3201 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges. Ecol. Lett. 24, 2427–2438 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Elmendorf, S. C. et al. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl Acad. Sci. USA 112, 448–452 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • Wallace, C. A. & Baltzer, J. L. Tall shrubs mediate abiotic conditions and plant communities at the taiga–tundra ecotone. Ecosystems 23, 828–841 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klanderud, K., Vandvik, V. & Goldberg, D. The Importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10, e0130205 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bråthen, K. A., Pugnaire, F. I. & Bardgett, R. D. The paradox of forbs in grasslands and the legacy of the mammoth steppe. Front. Ecol. Environ. 19, 584–592 (2021).

    Article 

    Google Scholar
     

  • Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speed, J. D. M. et al. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change? Glob. Chang. Biol. 27, 6568–6577 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132 (2021).

    Article 

    Google Scholar
     

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ke, P.-J. & Letten, A. D. Coexistence theory and the frequency-dependence of priority effects. Nat. Ecol. Evol. 2, 1691–1695 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Scharn, R. et al. Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra. Environ. Res. Lett. 16, 064031 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    Article 

    Google Scholar
     

  • Lett, S. et al. Can bryophyte groups increase functional resolution in tundra ecosystems?. Arctic Sci. 8, 609–637 (2021).

    Article 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. How do bryophytes govern generative recruitment of vascular plants? New Phytol. 190, 1019–1031 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mallen-Cooper, M., Graae, B. J. & Cornwell, W. K. Lichens buffer tundra microclimate more than the expanding shrub Betula nana. Ann. Bot. 128, 407–418 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes, B. C. The importance of bryophytes in the classification of human-disturbed high arctic vegetation. J. Veg. Sci. 5, 877–884 (1994).

    Article 

    Google Scholar
     

  • Forbes, B. C. Tundra disturbance studies, III: short-term effects of aeolian sand and dust, Yamal region, northwest Siberia. Environ. Conserv. 22, 335–344 (1995).

    Article 

    Google Scholar
     

  • Vihtakari, M. ggOceanMaps: Plot Data on Oceanographic Maps using ‘ggplot2’. R version 1.4 https://cran.r-project.org/web/packages/ggOceanMaps/index.html (2024).

  • Henry, G. H. R. et al. The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Sci. 8, 550–571 (2022).

    Article 

    Google Scholar
     

  • Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ray, N. & Adams, J. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeol. https://doi.org/10.11141/ia.11.2 (2001).

    Article 

    Google Scholar
     

  • Abbott, R. J. & Brochmann, C. History and evolution of the arctic flora: in the footsteps of Eric Hultén. Mol. Ecol. 12, 299–313 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Evolutionary history of the Arctic flora. Nat. Commun. 14, 4021 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).

  • Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

  • Otýpková, Z. & Chytrý, M. Effects of Plot Size and Heterogeneity of Vegetation Data Sets on Assessment of Evenness and β-Diversity. PhD thesis, Masaryk University (2006).

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Wal, R. & Stien, A. High-arctic plants like it hot: a long-term investigation of between-year variability in plant biomass. Ecology 95, 3414–3427 (2014).

    Article 

    Google Scholar
     

  • Rayback, S. A. & Henry, G. H. R. Dendrochronological potential of the Arctic dwarf-shrub Cassiope tetragona. Tree Ring Res. 61, 43–53 (2005).

    Article 

    Google Scholar
     

  • Weijers, S., Broekman, R. & Rozema, J. Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat. Sci. Rev. 29, 3831–3842 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Maria, B. & Udo, S. Why input matters: selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecol. Modell. 359, 92–102 (2017).

    Article 

    Google Scholar
     

  • Datta, A., Schweiger, O. & Kühn, I. Origin of climatic data can determine the transferability of species distribution models. NeoBiota 59, 61–76 (2020).

    Article 

    Google Scholar
     

  • Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article 

    Google Scholar
     

  • Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).

  • Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar
     

  • Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Article 
    ADS 

    Google Scholar
     

  • García Criado, M. et al. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat. Commun. 14, 3837 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naegeli, K. et al. ESA Snow Climate Change Initiative (Snow_cci): Daily global Snow Cover Fraction – snow on ground (SCFG) from AVHRR (1982–2018), v.2.0. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/3f034f4a08854eb59d58e1fa92d207b6 (2022).

  • Rantanen, M. et al. Bioclimatic atlas of the terrestrial Arctic. Sci. Data 10, 40 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • García Criado, M. marianagarciacriado/ArcticPlantDynamics: v.1. Zenodo https://doi.org/10.5281/zenodo.14884498 (2025).

  • Rantanen, M. et al. ARCLIM: bioclimatic indices for the terrestrial Arctic. Figshare https://doi.org/10.6084/m9.figshare.c.6216368.v2 (2023).



  • Source link

    More From Forest Beat

    For many island species, the next tropical cyclone may be their...

    When a major cyclone tears through an island nation, all efforts rightly focus on saving human lives and restoring...
    Biodiversity
    3
    minutes

    Mapping benthic habitats in Bohai Bay, China

    Habitat classification schemeDeveloping a benthic habitat classification scheme is a fundamental step in benthic habitat mapping, providing a structured framework for organizing and...
    Biodiversity
    8
    minutes

    Effect of climate on traits of dominant and rare tree species...

    Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, SwitzerlandIris Hordijk, Chelsea Chisholm, Daniel S. Maynard & Thomas W. CrowtherWageningen University and Research, Wageningen,...
    Biodiversity
    15
    minutes

    CheloniansTraits: a comprehensive trait database of global turtles and tortoises

    Lyson, T. R. et al. Fossorial origin of the turtle shell. Current Biology 26, 1887–1894 (2016).CAS  PubMed  ...
    Biodiversity
    6
    minutes
    spot_imgspot_img