[ad_1]
Bonney, R. et al. Citizen science: A developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009).
Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE. 12, e0172579 (2017).
Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).
Goldberg, J. K. iNaturalist is an open science resource for ecological genomics by enabling rapid and tractable records of initial observations of sequenced biological samples. Biol. Lett. 19, 20230251 (2023).
Mesaglio, T. & Callaghan, C. T. An overview of the history, current contributions and future outlook of iNaturalist in Australia. Wildl. Res. 48, 289–303 (2021).
Hantak, M. M. et al. Colour scales with climate in North American ratsnakes: A test of the thermal melanism hypothesis using community science images. Biol. Lett. 18, 20220403 (2022).
Davis, A. K., Nibbelink, N. & Deneka, C. J. Revisiting geographic variation in melanism of monarch butterfly larvae in North America using iNaturalist photos. J. Therm. Biol. 110, 103374 (2022).
Rhodes, C., Haunfelder, W. & Carlson, B. E. Citizen science reporting indicates geographic and phenotypic drivers of road use and mortality in a threatened rattlesnake. Curr. Zool. Zoac. 050 https://doi.org/10.1093/cz/zoac050 (2022).
Mesaglio, T., Soh, A., Kurniawidjaja, S. & Sexton, C. First known photographs of living specimens’: The power of iNaturalist for recording rare tropical butterflies. J. Insect Conserv. 25, 905–911 (2021).
Wilson, J. S., Pan, A. D., General, D. E. M. & Koch, J. B. More eyes on the prize: an observation of a very rare, threatened species of Philippine bumble bee, Bombus irisanensis, on iNaturalist and the importance of citizen science in conservation biology. J. Insect Conserv. 24, 727–729 (2020).
Campbell, C. J. et al. Identifying the identifiers: How iNaturalist facilitates collaborative, research-relevant data generation and why it matters for biodiversity science. BioScience 73, 533–541 (2023).
White, E., Soltis, P. S., Soltis, D. E. & Guralnick, R. Quantifying error in occurrence data: Comparing the data quality of iNaturalist and digitized herbarium specimen data in flowering plant families of the southeastern United States. PLoS ONE. 18, e0295298 (2023).
Rosa, R. M., Cavallari, D. C. & Salvador, R. B. iNaturalist as a tool in the study of tropical molluscs. PLoS ONE. 17, e0268048 (2022).
Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173, 144–154 (2014).
Isaac, N. J. B., Van Strien, A. J., August, T. A., De Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).
Arazy, O. & Malkinson, D. A. Framework of Observer-Based biases in citizen science biodiversity monitoring: Semi-structuring unstructured biodiversity monitoring protocols. Front. Ecol. Evol. 9, 693602 (2021).
Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora – Morphol. Distrib. Funct. Ecol. Plants. 206, 517–533 (2011).
Ferreira, B. G. et al. Feeding and other gall facets: Patterns and determinants in gall structure. Bot. Rev. 85, 78–106 (2019).
Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. RBT 67, (2019).
De Oliveira, D. C. & Moreira, A. S. F. P. & Dos Santos Isaias, R. M. Functional gradients in insect gall tissues: Studies on neotropical host plants. in neotropical insect galls (eds. Fernandes, G. W. & Santos, J. C.) 35–49 (Springer, 2014). https://doi.org/10.1007/978-94-017-8783-3_3
Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18, 512–522 (2003).
Takeda, S. et al. Exploring the diversity of galls on Artemisia indica induced by Rhopalomyia species through morphological and transcriptome analyses. Plant. Direct. 8, e619 (2024).
Lu, Q. et al. Macro- and microscopic analyses of anatomical structures of chinese gallnuts and their functional adaptation. Sci. Rep. 9, 5193 (2019).
Miller III, D. G. & Raman, A. Host–plant relations of gall-inducing insects. Annal. Entomo. Soc. America 112(1), 1–19 (2019).
Formiga, A. T., Silveira, F. A. O., Fernandes, G. W. & Isaias, R. M. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Plant. Biol. J. 17, 512–521 (2015).
Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).
Russo, R. Plant Galls of the Western United States (Princeton University Press, 2021).
Pascual-Alvarado, E., Nieves-Aldrey, J. L., Castillejos-Lemus, D. E., Cuevas-Reyes, P. & Oyama, K. Diversity of galls induced by wasps (Hymenoptera: cynipidae, Cynipini) associated with Oaks (Fagaceae: Quercus) in Mexico. Bot. Sci. 95, 461–472 (2017).
Karperien, A., Ahammer, H. & Jelinek, H. F. Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell. Neurosci 7, (2013).
Xiu, H. et al. Using fractal dimension and shape factors to characterize the microcrystalline cellulose (MCC) particle morphology and powder flowability. Powder Technol. 364, 241–250 (2020).
Wiese, R. et al. Can fractal dimensions objectivize gastropod shell morphometrics? A case study from lake Lugu (SW China). Ecol. Evol. 12, e8622 (2022).
Shi, P., Yu, K., Niinemets, Ü. & Gielis, J. Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae). Forests 12, 41 (2020).
Tatsumi, J., Yamauchi, A. & Kono, Y. Fractal analysis of plant root systems. Ann. Botany. 64, 499–503 (1989).
Groover, A. & Robischon, M. Developmental mechanisms regulating secondary growth in Woody plants. Curr. Opin. Plant. Biol. 9, 55–58 (2006).
Tsukaya, H. Leaf shape diversity with an emphasis on leaf contour variation, developmental background, and adaptation. Semin. Cell Dev. Biol. 79, 48–57 (2018).
Nakayama, H., Leichty, A. R. & Sinha, N. R. Molecular mechanisms underlying leaf development, morphological diversification, and beyond. Plant. Cell. 34, 2534–2548 (2022).
Bhatia, N., Runions, A. & Tsiantis, M. Leaf shape diversity: From genetic modules to computational models. Annu. Rev. Plant. Biol. 72, 325–356 (2021).
Coelho Kuster, V., Rezende, C., Cardoso, U. F. & Santos Isaias, J. C. D. R. M. & Coelho de oliveira, D. How galling organisms manipulate the secondary metabolites in the host plant tissues? A histochemical overview in Neotropical gall systems. In Bioactive molecules in food (eds Mérillon, J. M. & Ramawat, K. G.) 1–20 (Springer, Cham). https://doi.org/10.1007/978-3-319-76887-8_29-1. (2019).
Harris, M. O. & Pitzschke, A. Plants make galls to accommodate foreigners: Some are friends, most are foes. New Phytol. 225, 1852–1872 (2020).
Schultz, J. C., Edger, P. P., Body, M. J. A. & Appel, H. M. A galling insect activates plant reproductive programs during gall development. Sci. Rep. 9, 1833 (2019).
Takeda, S., Hirano, T., Ohshima, I. & Sato, M. H. Recent progress regarding the molecular aspects of insect gall formation. IJMS 22, 9424 (2021).
Udandarao, N. J., Yamashita, Y., Ushima, R., Tsuchida, T. & Bessho-Uehara, K. Parasitic-plant parasite utilizes flowering pathways at unconventional stages to form stem-derived galls. https://doi.org/10.1101/2024.10.17.618901 (2024).
Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-Inducing habit. J. Chem. Ecol. 40, 742–753 (2014).
Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect. Physiol. 84, 70–89 (2016).
Takeda, S. et al. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS ONE. 14, e0223686 (2019).
Hirano, T. et al. Reprogramming of the developmental program of Rhus Javanica during initial stage of gall induction by schlechtendalia chinensis. Front. Plant. Sci. 11, 471 (2020).
Hirano, T. et al. Ab-GALFA, A bioassay for insect gall formation using the model plant Arabidopsis Thaliana. Sci. Rep. 13, 2554 (2023).
Dayrell, R. L. C., Ott, T., Horrocks, T. & Poschlod, P. Automated extraction of seed morphological traits from images. Methods Ecol. Evol. 14, 1708–1718 (2023).
Barve, V. & Hart, E. _rinat: Access ‘iNaturalist’ Data Through APIs_. R package version 0.1.9, (2022). https://CRAN.R-project.org/package=rinat
Becker, O. S. R. A. & ARWRvbRBEbTP, M. Deckmyn. A _maps: Draw Geographical Maps_. R package version 3.4.2.1, (2024). https://CRAN.R-project.org/package=maps
Kirkby, M. J. & Francisco, S. The fractal geometry of nature. Benoit B. Mandelbrot. W. H. Freeman and co., No. of pages: 460. Price: £22.75 (hardback). Earth Surf Processes Landf 8, 406–406 (1983). (1982).
Gagnepain, J. J. & Roques-Carmes, C. Fractal approach to two-dimensional and three-dimensional surface roughness. Wear 109, 119–126 (1986).
Bonhomme, V., Picq, S., Gaucherel, C. & Claude, J. Momocs: Outline analysis using R. J. Stat. Soft 56, (2014).
Gneiting, T., Ševčíková, H. & Percival, D. B. Estimators of fractal dimension: Assessing the roughness of time series and Spatial data. Stat. Sci. 27, (2012).
Hadfield, J. D. MCMC methods for Multi-Response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft 33, (2010).
Paradis, E., Claude, J. & Strimmer, K. A. P. E. Analyses of phylogenetics and evolution in R Language. Bioinformatics 20, 289–290 (2004).
Plummer, M. et al. Coda: output analysis and diagnostics for MCMC. R Foundation. https://doi.org/10.32614/cran.package.coda (1999).
[ad_2]
Source link