Plant species as ecological engineers of microtopography in a temperate sedge-grass marsh


  • Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, 2003).

    Book 

    Google Scholar
     

  • Crawford, R. M. M. Plants at the Margin Ecological Limits and Climate Change (Cambridge University Press, 2008).

    Book 

    Google Scholar
     

  • Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274–287 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dušek, J. Effect of rooting media on the proportion of rhizome cortex and central cylinder of Phalaris arundinacea. Biol. Bratisl. 57, 75–79 (2002).


    Google Scholar
     

  • Kozela, C. & Regan, S. How plants make tubes. Trends Plant Sci. 8, 159–164 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, D. E. Aerenchyma formation: Tansley review. New Phytol. 161, 35–49 (2003).

    Article 

    Google Scholar
     

  • Končalová, H. Anatomical adaptations to waterlogging in roots of wetland graminoids – limitations and drawbacks. Aquat. Bot. 38, 127–134 (1990).

    Article 

    Google Scholar
     

  • Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W. & Beckett, P. M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann. Bot. 86, 687–703 (2000).

    Article 

    Google Scholar
     

  • Faußer, A. C., Dušek, J., Čížková, H. & Kazda, M. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption. AoB Plants 8, plw025 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dušek, J., Dařenová, E., Pavelka, M. & Marek, M. V. Methane and carbon dioxide release from wetland ecosystems. In Climate Change and Soil Interactions 509–553 (Elsevier, 2020).

    Chapter 

    Google Scholar
     

  • Doležal, J. et al. Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals. Environ. Exp. Bot. 187, 104495 (2021).

    Article 

    Google Scholar
     

  • Honissová, M. et al. Seasonal dynamics of biomass partitioning in a tall sedge, Carex acuta L.. Aquat. Bot. 125, 64–71 (2015).

    Article 

    Google Scholar
     

  • Peach, M. & Zedler, J. B. How tussocks structure sedge meadow vegetation. Wetlands 26, 322–335 (2006).

    Article 

    Google Scholar
     

  • Qi, Q. et al. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland. Sci. Total Environ. 780, 146630 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soukupová, L. Life strategy of graminoid populations in the wet meadows. In Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 255–267 (CRC Press, 2002).


    Google Scholar
     

  • Heywood, V. H. (ed.) Flowering Plants of the World (Oxford University Press, 1993).


    Google Scholar
     

  • van de Koppel, J. & Crain, C. M. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh. Am. Nat. 168, E136–E147 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, D. J., Qi, Q. & Tong, S. Z. Growth of carex tussocks as a response of flooding depth and tussock patterning and size in temperate sedge wetland, Northeast China. Russ. J. Ecol. 51, 144–150 (2020).

    Article 

    Google Scholar
     

  • Costello, D. F. Tussock meadows in Southeastern Wisconsin. Bot. Gaz. 97, 610–648 (1936).

    Article 

    Google Scholar
     

  • Crain, C. M. & Bertness, M. D. Community impacts of a tussock sedge: Is ecosystem engineering important in benign habitats?. Ecology 86, 2695–2704 (2005).

    Article 

    Google Scholar
     

  • Lawrence, B. A. & Zedler, J. B. Carbon storage by Carex stricta Tussocks: A restorable ecosystem service?. Wetlands 33, 483–493 (2013).

    Article 

    Google Scholar
     

  • Lawrence, B. A. & Zedler, J. B. Formation of tussocks by sedges: effects of hydroperiod and nutrients. Ecol. Appl. 21, 1745–1759 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Werner, K. J. & Zedler, J. B. How sedge meadow soils, microtopography, and vegetation respond to Sedimentation. Wetlands 22, 451–466 (2002).

    Article 

    Google Scholar
     

  • Lawrence, B. A., Fahey, T. J. & Zedler, J. B. Root dynamics of Carex stricta-dominated tussock meadows. Plant Soil 364, 325–339 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yu, F.-H., Krüsi, B., Schütz, M., Schneller, J. & Wildi, O. Is Vegetation inside Carex sempervirens tussocks highly specific or an image of the surrounding vegetation?. J. Veg. Sci. 17, 567–576 (2006).

    Article 

    Google Scholar
     

  • Musilová, Z., Musil, P., Zouhar, J. & Polakova, S. Nest survival in the Reed Bunting Emberiza schoeniclus in fragmented wetland habitats: The effect of nest-site selection. Ornis Fenn. 91, 138–148 (2014).

    Article 

    Google Scholar
     

  • Folliot, B., Caizergues, A., Barbotin, A. & Guillemain, M. Environmental and individual correlates of common pochard (Aythya ferina) nesting success. Eur. J. Wildl. Res. 63, 69 (2017).

    Article 

    Google Scholar
     

  • Frieswyk, C. B., Johnston, C. A. & Zedler, J. B. Identifying and characterizing dominant plants as an indicator of community condition. J. Great Lakes Res. 33, 125–135 (2007).

    Article 

    Google Scholar
     

  • Stovall, A. E. L., Diamond, J. S., Slesak, R. A., McLaughlin, D. L. & Shugart, H. Quantifying wetland microtopography with terrestrial laser scanning. Remote Sens. Environ. 232, 111271 (2019).

    Article 

    Google Scholar
     

  • Vítková, J., Dušek, J., Stellner, S., Moulisová, L. & Čížkova, H. Effect of hummock-forming vegetation on methane emissions from a temperate sedge-grass marsh. Wetlands 37, 675–686 (2017).

    Article 

    Google Scholar
     

  • Courtwright, J. & Findlay, S. E. G. Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson river. Wetlands 31, 239–249 (2011).

    Article 

    Google Scholar
     

  • Frei, S. & Fleckenstein, J. H. Representing effects of micro-topography on runoff generation and sub-surface flow patterns by using superficial rill/depression storage height variations. Environ. Model. Softw. 52, 5–18 (2014).

    Article 

    Google Scholar
     

  • Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in riparian wetlands. J. Hydrol. 543, 182–196 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, J. T. & Davis, C. A. Wetland Techniques Vol. 1: Foundations 46 (Springer, 2013).

    Book 

    Google Scholar
     

  • Pirotti, F. Laser scanner applications in forest and environmental sciences. ItJRS https://doi.org/10.5721/ItJRS20124419 (2012).

    Article 

    Google Scholar
     

  • Pirotti, F., Liang, X. & Chen, Q. Preface of special issue on laser scanning. Appl. Sci. https://doi.org/10.3390/app9132713 (2019).

    Article 

    Google Scholar
     

  • Jozkow, G., Borkowski, A. & Kasprzak, M. Monitoring of fluvial transport in the mountain river bed using terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. https://doi.org/10.5194/isprsarchives-XLI-B7-523-2016 (2016).

  • Yang, Y. et al. Responses of the methanogenic pathway and fraction of CH4 oxidization in a flooded paddy soil to rice planting. Pedosphere 31, 859–871 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).

    Article 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management (eds Samson, F. B. & Knopf, F. L.) 130–147 (Springer, 1994).

    Chapter 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effect of organisms as physical ecosystem engineers. Ecology 78, 1946–1957 (1997).

    Article 

    Google Scholar
     

  • Hannam, M. & Moskal, L. Terrestrial laser scanning reveals seagrass microhabitat structure on a tideflat. Remote Sens. 7, 3037–3055 (2015).

    Article 

    Google Scholar
     

  • Liang, X. et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote. Sens. 115, 63–77 (2016).

    Article 

    Google Scholar
     

  • Calders, K. et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).

    Article 

    Google Scholar
     

  • Koma, Z. et al. Quantifying 3D vegetation structure in wetlands using differently measured airborne laser scanning data. Ecol. Ind. 127, 107752 (2021).

    Article 

    Google Scholar
     

  • Toivonen, J., Kangas, A., Maltamo, M., Kukkonen, M. & Packalen, P. Assessing biodiversity using forest structure indicators based on airborne laser scanning data. For. Ecol. Manag. 546, 121376 (2023).

    Article 

    Google Scholar
     

  • Penman, S., Lentini, P., Law, B. & York, A. An instructional workflow for using terrestrial laser scanning (TLS) to quantify vegetation structure for wildlife studies. For. Ecol. Manag. 548, 121405 (2023).

    Article 

    Google Scholar
     

  • Vauhkonen, J. & Imponen, J. Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning. For. Int. J. For. Res. 89, 350–363 (2016).


    Google Scholar
     

  • Koma, Z., Seijmonsbergen, A. C. & Kissling, W. D. Classifying wetland-related land cover types and habitats using fine-scale lidar metrics derived from country-wide airborne laser scanning. Remote Sens. Ecol. Conserv. 7, 80–96 (2021).

    Article 

    Google Scholar
     

  • Yang, C.-J., Jen, C.-H., Cheng, Y.-C. & Lin, J.-C. Quantification of mudcracks-driven erosion using terrestrial laser scanning in laboratory runoff experiment. Geomorphology 375, 107527 (2021).

    Article 

    Google Scholar
     

  • Müller, J. & Vierling, K. Assessing biodiversity by airborne laser scanning. In Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies (eds Maltamo, M. et al.) 357–374 (Springer, 2014).

    Chapter 

    Google Scholar
     

  • Koarai, M. Landscape ecological mapping for biodiversity evaluation using airborne laser scanning data. In Monitoring and Modeling of Global Changes: A Geomatics Perspective (eds Li, J. & Yang, X.) 137–154 (Springer, 2015).

    Chapter 

    Google Scholar
     

  • Guimarães-Steinicke, C. et al. Chapter four—Terrestrial laser scanning reveals temporal changes in biodiversity mechanisms driving grassland productivity. In Advances in Ecological Research (eds Eisenhauer, N. et al.) 133–161 (Academic Press, 2019).


    Google Scholar
     

  • Stereńczak, K. et al. Global airborne laser scanning data providers database (GlobALS)—A new tool for monitoring ecosystems and biodiversity. Remote Sens. 12, 1877 (2020).

    Article 

    Google Scholar
     

  • Lee, H.-J., Yang, S.-R. & Lee, K.-M. Ecological restoration monitoring of open-pit mines using airborne laser scanning. J. Korean Soc. Geospat. Inf. Sci. 16, 101–107 (2008).


    Google Scholar
     

  • Zlinszky, A., Mücke, W., Lehner, H., Briese, C. & Pfeifer, N. Categorizing wetland vegetation by airborne laser scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sens. 4, 1617–1650 (2012).

    Article 

    Google Scholar
     

  • Cordell, S. et al. Remote sensing for restoration planning: how the big picture can inform stakeholders. Restor. Ecol. 25, S147–S154 (2017).

    Article 

    Google Scholar
     

  • Levick, D. S. R. Monitoring Mangrove Rehabilitation with Terrestrial Laser Scanning (CSIRO, 2021).


    Google Scholar
     

  • Camarretta, N. et al. Handheld laser scanning detects spatiotemporal differences in the development of structural traits among species in restoration plantings. Remote Sens. 13, 1706 (2021).

    Article 

    Google Scholar
     

  • Valkama, E., Lyytinen, S. & Koricheva, J. The impact of reed management on wildlife: A meta-analytical review of European studies. Biol. Cons. 141, 364–374 (2008).

    Article 

    Google Scholar
     

  • Gray, M. J., Chamberlain, M. J., Buehler, D. A. & Sutton, W. B. Wetland WILDLIFE MONITORING AND ASSESSMENT. In Wetland Techniques (eds Anderson, J. T. & Davis, C. A.) 265–318 (Springer, 2013).

    Chapter 

    Google Scholar
     

  • Helle, P., Ikonen, K. & Kantola, A. Wildlife monitoring in Finland: online information for game administration, hunters, and the wider public. Can. J. For. Res. 46, 1491–1496 (2016).

    Article 

    Google Scholar
     

  • Shokirov S, Levick SR, Jucker T, Yeoh P, Youngentob K 2020 Comparison of TLS and ULS Data for Wildlife Habitat Assessments in Temperate Woodlands. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing, 6097–6100. https://doi.org/10.1109/IGARSS39084.2020.9323451.

  • Riegel, J. B., Bernhardt, E. & Swenson, J. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing. PLoS ONE 8, e68251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsoy, P. J., Glenn, N. F. & Clark, P. E. Estimating sagebrush biomass using terrestrial laser scanning. Rangel. Ecol. Manag. 67, 224–228 (2014).

    Article 

    Google Scholar
     

  • Hopkinson, C. et al. Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning, biometry and eddy covariance data. Remote Sens. Environ. 181, 82–95 (2016).

    Article 

    Google Scholar
     

  • Owers, C. J., Rogers, K. & Woodroffe, C. D. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuar. Coast. Shelf Sci. 204, 164–176 (2018).

    Article 

    Google Scholar
     

  • Melo, A. M. et al. Monitoring the understory in eucalyptus plantations using airborne laser scanning. Sci. Agric. 78, e20190134 (2020).

    Article 

    Google Scholar
     

  • Li, S. et al. Harnessing terrestrial laser scanning to predict understory biomass in temperate mixed forests. Ecol. Ind. 121, 107011 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brede, B. et al. Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning. Remote Sens. Environ. 280, 113180 (2022).

    Article 

    Google Scholar
     

  • Mirtl, M. Introducing the next generation of ecosystem research in Europe: LTER-Europe’s multi-functional and multi-scale approach. In Long-Term Ecological Research (eds Müller, F. et al.) 75–93 (Springer, 2010).

    Chapter 

    Google Scholar
     

  • Dušek, J., Hudecová, Š & Stellner, S. Extreme precipitation and long-term precipitation changes in a Central European sedge-grass marsh in the context of flood occurrence. Hydrol. Sci. J. 62, 1796–1808 (2017).

    Article 

    Google Scholar
     

  • Mejdová, M., Dušek, J., Foltýnová, L., Macálková, L. & Čížková, H. Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition. Sci. Rep. 11, 3723 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landucci, F. et al. Classification of the European marsh vegetation (Phragmito-Magnocaricetea ) to the association level. Appl. Veg. Sci. 23, 297–316 (2020).

    Article 

    Google Scholar
     

  • Holubičková, B. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of peatland vegetation. I. Mokré louky near Třeboň). Proceedings of the University of Agriculture in Prague 1959, 257–285 (1959).

  • Blažková, D. Pflanzensoziologische studie über die wiesen der südböhmischen becken. Stud. CSAV 73, 1–172 (1973).


    Google Scholar
     

  • Prach, K. Vegetational changes in a wet meadow complex, south-bohemia, Czech Republic. Folia Geobot. Phytotaxon. 28, 1–13 (1993).

    Article 

    Google Scholar
     

  • Prach, K. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. 43, 119–130 (2008).

    Article 

    Google Scholar
     

  • Dušek, J., Stellner, S. & Komárek, A. Long-term air temperature changes in a Central European sedge-grass marsh. Ecohydrology 6, 182–190 (2013).

    Article 

    Google Scholar
     

  • Graf, A. et al. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2019.0524 (2020).

    Article 

    Google Scholar
     

  • Walter, H. & Lieth, H. Klimadiagramm-Weltatlas (Gustav Fischer Verlag, 1960).


    Google Scholar
     

  • R Development Core Team. R: A language and environment for statistical computing. (2022).

  • Kreylos, O., Bawden, G. W. & Kellogg, L. H. Immersive visualization and analysis of LiDAR data. In Advances in Visual Computing (ed. Bebis, G.) 846–855 (Springer, 2008).

    Chapter 

    Google Scholar
     

  • Chambers, J. M. Software for Data Analysis: Programming with R (Springer, 2008).

    Book 

    Google Scholar
     

  • Zar, J. H. Biostatistical Analysis (Prentice Hall, 2010).


    Google Scholar
     

  • Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (John Wiley & Sons Inc, 2014).


    Google Scholar
     

  • Wang, M., Wang, G., Wang, S. & Jiang, M. Structure and richness of Carex meyeriana tussocks in peatlands of Northeastern China. Wetlands 38, 15–23 (2018).

    Article 

    Google Scholar
     

  • Qi, Q. et al. The driving mechanisms for community expansion in a restored Carex tussock wetland. Ecol. Ind. 121, 107040 (2021).

    Article 

    Google Scholar
     

  • Biasi, C. et al. Microtopography and plant-cover controls on nitrogen dynamics in Hummock Tundra ecosystems in Siberia. Arct. Antarct. Alp. Res. 37, 435–443 (2005).

    Article 

    Google Scholar
     

  • Diamond, J. S. et al. A little relief: Ecological functions and autogenesis of wetland microtopography. WIREs Water 8, e1493 (2021).

    Article 

    Google Scholar
     

  • van Bergen, T. J. H. M. et al. Self-facilitation and negative species interactions could drive microscale vegetation mosaic in a floating fen. J. Veg. Sci. 31, 343–354 (2020).

    Article 

    Google Scholar
     

  • Nungesser, M. K. Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol. Model. 165, 175–207 (2003).

    Article 

    Google Scholar
     

  • Johnson, L. C., Damman, A. W. H. & Malmer, N. Sphagnum macrostructure as an indicator of decay and compaction in peat cores from an ombrotrophic south Swedish peat-bog. J. Ecol. 78, 633 (1990).

    Article 

    Google Scholar
     

  • Dušek, J. et al. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agric. For. Meteorol. 149, 1524–1530 (2009).

    Article 

    Google Scholar
     

  • Klimešová, J., Danihelka, J., Chrtek, J., de Bello, F. & Herben, T. CLO-PLA: a database of clonal and bud-bank traits of the Central European flora. Ecology 98, 1179–1179 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hejný, S. Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot. Phytotaxon. 25, 245–255 (1990).

    Article 

    Google Scholar
     

  • Anderson, J. E. & Reznicek, A. A. Glyceria maxima (Poaceae) in New England. Rhodora 96, 97–101 (1994).


    Google Scholar
     

  • Lambert, J. M. Glyceria maxima (Hartm.) Holmb.. J. Ecol. 34, 310 (1947).

    Article 

    Google Scholar
     

  • Westlake, D. F. The biomass and productivity of glyceria maxima: I. Seasonal changes in biomass. J. Ecol. 54, 745 (1966).

    Article 

    Google Scholar
     

  • Westlake, D. F. et al. The Production Ecology of Wetlands: The IBP Synthesis (Cambridge University Press, 1998).


    Google Scholar
     

  • Motley, T. J. The ethnobotany of sweet flag, acorus Calamus (Araceae). Econ. Bot. 48, 397–412 (1994).

    Article 

    Google Scholar
     

  • Soukupová, L. Calamagrostis canescens: Population biology of a clonal grass invading wetlands. Oikos 63, 395–401 (1992).

    Article 

    Google Scholar
     

  • Dykyjová, D. Production ecology of Acorus calamus. Folia Geobota. Phytotaxon. 15, 29–57 (1980).

    Article 

    Google Scholar
     

  • Chambers, R. M., Meyerson, L. A. & Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64, 261–273 (1999).

    Article 

    Google Scholar
     

  • López-Rosas, H. & Moreno-Casasola, P. Invader versus natives: Effects of hydroperiod on competition between hydrophytes in a tropical freshwater marsh. Basic Appl. Ecol. 13, 40–49 (2012).

    Article 

    Google Scholar
     

  • Brázdil, R., Chromá, K., Dobrovolný, P. & Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Climatol. 29, 223–242 (2009).

    Article 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img