Plant species as ecological engineers of microtopography in a temperate sedge-grass marsh


  • Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, 2003).

    Book 

    Google Scholar
     

  • Crawford, R. M. M. Plants at the Margin Ecological Limits and Climate Change (Cambridge University Press, 2008).

    Book 

    Google Scholar
     

  • Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274–287 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dušek, J. Effect of rooting media on the proportion of rhizome cortex and central cylinder of Phalaris arundinacea. Biol. Bratisl. 57, 75–79 (2002).


    Google Scholar
     

  • Kozela, C. & Regan, S. How plants make tubes. Trends Plant Sci. 8, 159–164 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, D. E. Aerenchyma formation: Tansley review. New Phytol. 161, 35–49 (2003).

    Article 

    Google Scholar
     

  • Končalová, H. Anatomical adaptations to waterlogging in roots of wetland graminoids – limitations and drawbacks. Aquat. Bot. 38, 127–134 (1990).

    Article 

    Google Scholar
     

  • Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W. & Beckett, P. M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann. Bot. 86, 687–703 (2000).

    Article 

    Google Scholar
     

  • Faußer, A. C., Dušek, J., Čížková, H. & Kazda, M. Diurnal dynamics of oxygen and carbon dioxide concentrations in shoots and rhizomes of a perennial in a constructed wetland indicate down-regulation of below ground oxygen consumption. AoB Plants 8, plw025 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dušek, J., Dařenová, E., Pavelka, M. & Marek, M. V. Methane and carbon dioxide release from wetland ecosystems. In Climate Change and Soil Interactions 509–553 (Elsevier, 2020).

    Chapter 

    Google Scholar
     

  • Doležal, J. et al. Anatomical adaptations in aquatic and wetland dicot plants: Disentangling the environmental, morphological and evolutionary signals. Environ. Exp. Bot. 187, 104495 (2021).

    Article 

    Google Scholar
     

  • Honissová, M. et al. Seasonal dynamics of biomass partitioning in a tall sedge, Carex acuta L.. Aquat. Bot. 125, 64–71 (2015).

    Article 

    Google Scholar
     

  • Peach, M. & Zedler, J. B. How tussocks structure sedge meadow vegetation. Wetlands 26, 322–335 (2006).

    Article 

    Google Scholar
     

  • Qi, Q. et al. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland. Sci. Total Environ. 780, 146630 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soukupová, L. Life strategy of graminoid populations in the wet meadows. In Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 255–267 (CRC Press, 2002).


    Google Scholar
     

  • Heywood, V. H. (ed.) Flowering Plants of the World (Oxford University Press, 1993).


    Google Scholar
     

  • van de Koppel, J. & Crain, C. M. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh. Am. Nat. 168, E136–E147 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, D. J., Qi, Q. & Tong, S. Z. Growth of carex tussocks as a response of flooding depth and tussock patterning and size in temperate sedge wetland, Northeast China. Russ. J. Ecol. 51, 144–150 (2020).

    Article 

    Google Scholar
     

  • Costello, D. F. Tussock meadows in Southeastern Wisconsin. Bot. Gaz. 97, 610–648 (1936).

    Article 

    Google Scholar
     

  • Crain, C. M. & Bertness, M. D. Community impacts of a tussock sedge: Is ecosystem engineering important in benign habitats?. Ecology 86, 2695–2704 (2005).

    Article 

    Google Scholar
     

  • Lawrence, B. A. & Zedler, J. B. Carbon storage by Carex stricta Tussocks: A restorable ecosystem service?. Wetlands 33, 483–493 (2013).

    Article 

    Google Scholar
     

  • Lawrence, B. A. & Zedler, J. B. Formation of tussocks by sedges: effects of hydroperiod and nutrients. Ecol. Appl. 21, 1745–1759 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Werner, K. J. & Zedler, J. B. How sedge meadow soils, microtopography, and vegetation respond to Sedimentation. Wetlands 22, 451–466 (2002).

    Article 

    Google Scholar
     

  • Lawrence, B. A., Fahey, T. J. & Zedler, J. B. Root dynamics of Carex stricta-dominated tussock meadows. Plant Soil 364, 325–339 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yu, F.-H., Krüsi, B., Schütz, M., Schneller, J. & Wildi, O. Is Vegetation inside Carex sempervirens tussocks highly specific or an image of the surrounding vegetation?. J. Veg. Sci. 17, 567–576 (2006).

    Article 

    Google Scholar
     

  • Musilová, Z., Musil, P., Zouhar, J. & Polakova, S. Nest survival in the Reed Bunting Emberiza schoeniclus in fragmented wetland habitats: The effect of nest-site selection. Ornis Fenn. 91, 138–148 (2014).

    Article 

    Google Scholar
     

  • Folliot, B., Caizergues, A., Barbotin, A. & Guillemain, M. Environmental and individual correlates of common pochard (Aythya ferina) nesting success. Eur. J. Wildl. Res. 63, 69 (2017).

    Article 

    Google Scholar
     

  • Frieswyk, C. B., Johnston, C. A. & Zedler, J. B. Identifying and characterizing dominant plants as an indicator of community condition. J. Great Lakes Res. 33, 125–135 (2007).

    Article 

    Google Scholar
     

  • Stovall, A. E. L., Diamond, J. S., Slesak, R. A., McLaughlin, D. L. & Shugart, H. Quantifying wetland microtopography with terrestrial laser scanning. Remote Sens. Environ. 232, 111271 (2019).

    Article 

    Google Scholar
     

  • Vítková, J., Dušek, J., Stellner, S., Moulisová, L. & Čížkova, H. Effect of hummock-forming vegetation on methane emissions from a temperate sedge-grass marsh. Wetlands 37, 675–686 (2017).

    Article 

    Google Scholar
     

  • Courtwright, J. & Findlay, S. E. G. Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson river. Wetlands 31, 239–249 (2011).

    Article 

    Google Scholar
     

  • Frei, S. & Fleckenstein, J. H. Representing effects of micro-topography on runoff generation and sub-surface flow patterns by using superficial rill/depression storage height variations. Environ. Model. Softw. 52, 5–18 (2014).

    Article 

    Google Scholar
     

  • Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in riparian wetlands. J. Hydrol. 543, 182–196 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, J. T. & Davis, C. A. Wetland Techniques Vol. 1: Foundations 46 (Springer, 2013).

    Book 

    Google Scholar
     

  • Pirotti, F. Laser scanner applications in forest and environmental sciences. ItJRS https://doi.org/10.5721/ItJRS20124419 (2012).

    Article 

    Google Scholar
     

  • Pirotti, F., Liang, X. & Chen, Q. Preface of special issue on laser scanning. Appl. Sci. https://doi.org/10.3390/app9132713 (2019).

    Article 

    Google Scholar
     

  • Jozkow, G., Borkowski, A. & Kasprzak, M. Monitoring of fluvial transport in the mountain river bed using terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. https://doi.org/10.5194/isprsarchives-XLI-B7-523-2016 (2016).

  • Yang, Y. et al. Responses of the methanogenic pathway and fraction of CH4 oxidization in a flooded paddy soil to rice planting. Pedosphere 31, 859–871 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Telling, J., Lyda, A., Hartzell, P. & Glennie, C. Review of earth science research using terrestrial laser scanning. Earth Sci. Rev. 169, 35–68 (2017).

    Article 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management (eds Samson, F. B. & Knopf, F. L.) 130–147 (Springer, 1994).

    Chapter 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effect of organisms as physical ecosystem engineers. Ecology 78, 1946–1957 (1997).

    Article 

    Google Scholar
     

  • Hannam, M. & Moskal, L. Terrestrial laser scanning reveals seagrass microhabitat structure on a tideflat. Remote Sens. 7, 3037–3055 (2015).

    Article 

    Google Scholar
     

  • Liang, X. et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote. Sens. 115, 63–77 (2016).

    Article 

    Google Scholar
     

  • Calders, K. et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).

    Article 

    Google Scholar
     

  • Koma, Z. et al. Quantifying 3D vegetation structure in wetlands using differently measured airborne laser scanning data. Ecol. Ind. 127, 107752 (2021).

    Article 

    Google Scholar
     

  • Toivonen, J., Kangas, A., Maltamo, M., Kukkonen, M. & Packalen, P. Assessing biodiversity using forest structure indicators based on airborne laser scanning data. For. Ecol. Manag. 546, 121376 (2023).

    Article 

    Google Scholar
     

  • Penman, S., Lentini, P., Law, B. & York, A. An instructional workflow for using terrestrial laser scanning (TLS) to quantify vegetation structure for wildlife studies. For. Ecol. Manag. 548, 121405 (2023).

    Article 

    Google Scholar
     

  • Vauhkonen, J. & Imponen, J. Unsupervised classification of airborne laser scanning data to locate potential wildlife habitats for forest management planning. For. Int. J. For. Res. 89, 350–363 (2016).


    Google Scholar
     

  • Koma, Z., Seijmonsbergen, A. C. & Kissling, W. D. Classifying wetland-related land cover types and habitats using fine-scale lidar metrics derived from country-wide airborne laser scanning. Remote Sens. Ecol. Conserv. 7, 80–96 (2021).

    Article 

    Google Scholar
     

  • Yang, C.-J., Jen, C.-H., Cheng, Y.-C. & Lin, J.-C. Quantification of mudcracks-driven erosion using terrestrial laser scanning in laboratory runoff experiment. Geomorphology 375, 107527 (2021).

    Article 

    Google Scholar
     

  • Müller, J. & Vierling, K. Assessing biodiversity by airborne laser scanning. In Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies (eds Maltamo, M. et al.) 357–374 (Springer, 2014).

    Chapter 

    Google Scholar
     

  • Koarai, M. Landscape ecological mapping for biodiversity evaluation using airborne laser scanning data. In Monitoring and Modeling of Global Changes: A Geomatics Perspective (eds Li, J. & Yang, X.) 137–154 (Springer, 2015).

    Chapter 

    Google Scholar
     

  • Guimarães-Steinicke, C. et al. Chapter four—Terrestrial laser scanning reveals temporal changes in biodiversity mechanisms driving grassland productivity. In Advances in Ecological Research (eds Eisenhauer, N. et al.) 133–161 (Academic Press, 2019).


    Google Scholar
     

  • Stereńczak, K. et al. Global airborne laser scanning data providers database (GlobALS)—A new tool for monitoring ecosystems and biodiversity. Remote Sens. 12, 1877 (2020).

    Article 

    Google Scholar
     

  • Lee, H.-J., Yang, S.-R. & Lee, K.-M. Ecological restoration monitoring of open-pit mines using airborne laser scanning. J. Korean Soc. Geospat. Inf. Sci. 16, 101–107 (2008).


    Google Scholar
     

  • Zlinszky, A., Mücke, W., Lehner, H., Briese, C. & Pfeifer, N. Categorizing wetland vegetation by airborne laser scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sens. 4, 1617–1650 (2012).

    Article 

    Google Scholar
     

  • Cordell, S. et al. Remote sensing for restoration planning: how the big picture can inform stakeholders. Restor. Ecol. 25, S147–S154 (2017).

    Article 

    Google Scholar
     

  • Levick, D. S. R. Monitoring Mangrove Rehabilitation with Terrestrial Laser Scanning (CSIRO, 2021).


    Google Scholar
     

  • Camarretta, N. et al. Handheld laser scanning detects spatiotemporal differences in the development of structural traits among species in restoration plantings. Remote Sens. 13, 1706 (2021).

    Article 

    Google Scholar
     

  • Valkama, E., Lyytinen, S. & Koricheva, J. The impact of reed management on wildlife: A meta-analytical review of European studies. Biol. Cons. 141, 364–374 (2008).

    Article 

    Google Scholar
     

  • Gray, M. J., Chamberlain, M. J., Buehler, D. A. & Sutton, W. B. Wetland WILDLIFE MONITORING AND ASSESSMENT. In Wetland Techniques (eds Anderson, J. T. & Davis, C. A.) 265–318 (Springer, 2013).

    Chapter 

    Google Scholar
     

  • Helle, P., Ikonen, K. & Kantola, A. Wildlife monitoring in Finland: online information for game administration, hunters, and the wider public. Can. J. For. Res. 46, 1491–1496 (2016).

    Article 

    Google Scholar
     

  • Shokirov S, Levick SR, Jucker T, Yeoh P, Youngentob K 2020 Comparison of TLS and ULS Data for Wildlife Habitat Assessments in Temperate Woodlands. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing, 6097–6100. https://doi.org/10.1109/IGARSS39084.2020.9323451.

  • Riegel, J. B., Bernhardt, E. & Swenson, J. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing. PLoS ONE 8, e68251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olsoy, P. J., Glenn, N. F. & Clark, P. E. Estimating sagebrush biomass using terrestrial laser scanning. Rangel. Ecol. Manag. 67, 224–228 (2014).

    Article 

    Google Scholar
     

  • Hopkinson, C. et al. Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning, biometry and eddy covariance data. Remote Sens. Environ. 181, 82–95 (2016).

    Article 

    Google Scholar
     

  • Owers, C. J., Rogers, K. & Woodroffe, C. D. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuar. Coast. Shelf Sci. 204, 164–176 (2018).

    Article 

    Google Scholar
     

  • Melo, A. M. et al. Monitoring the understory in eucalyptus plantations using airborne laser scanning. Sci. Agric. 78, e20190134 (2020).

    Article 

    Google Scholar
     

  • Li, S. et al. Harnessing terrestrial laser scanning to predict understory biomass in temperate mixed forests. Ecol. Ind. 121, 107011 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brede, B. et al. Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning. Remote Sens. Environ. 280, 113180 (2022).

    Article 

    Google Scholar
     

  • Mirtl, M. Introducing the next generation of ecosystem research in Europe: LTER-Europe’s multi-functional and multi-scale approach. In Long-Term Ecological Research (eds Müller, F. et al.) 75–93 (Springer, 2010).

    Chapter 

    Google Scholar
     

  • Dušek, J., Hudecová, Š & Stellner, S. Extreme precipitation and long-term precipitation changes in a Central European sedge-grass marsh in the context of flood occurrence. Hydrol. Sci. J. 62, 1796–1808 (2017).

    Article 

    Google Scholar
     

  • Mejdová, M., Dušek, J., Foltýnová, L., Macálková, L. & Čížková, H. Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition. Sci. Rep. 11, 3723 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landucci, F. et al. Classification of the European marsh vegetation (Phragmito-Magnocaricetea ) to the association level. Appl. Veg. Sci. 23, 297–316 (2020).

    Article 

    Google Scholar
     

  • Holubičková, B. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of peatland vegetation. I. Mokré louky near Třeboň). Proceedings of the University of Agriculture in Prague 1959, 257–285 (1959).

  • Blažková, D. Pflanzensoziologische studie über die wiesen der südböhmischen becken. Stud. CSAV 73, 1–172 (1973).


    Google Scholar
     

  • Prach, K. Vegetational changes in a wet meadow complex, south-bohemia, Czech Republic. Folia Geobot. Phytotaxon. 28, 1–13 (1993).

    Article 

    Google Scholar
     

  • Prach, K. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. 43, 119–130 (2008).

    Article 

    Google Scholar
     

  • Dušek, J., Stellner, S. & Komárek, A. Long-term air temperature changes in a Central European sedge-grass marsh. Ecohydrology 6, 182–190 (2013).

    Article 

    Google Scholar
     

  • Graf, A. et al. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2019.0524 (2020).

    Article 

    Google Scholar
     

  • Walter, H. & Lieth, H. Klimadiagramm-Weltatlas (Gustav Fischer Verlag, 1960).


    Google Scholar
     

  • R Development Core Team. R: A language and environment for statistical computing. (2022).

  • Kreylos, O., Bawden, G. W. & Kellogg, L. H. Immersive visualization and analysis of LiDAR data. In Advances in Visual Computing (ed. Bebis, G.) 846–855 (Springer, 2008).

    Chapter 

    Google Scholar
     

  • Chambers, J. M. Software for Data Analysis: Programming with R (Springer, 2008).

    Book 

    Google Scholar
     

  • Zar, J. H. Biostatistical Analysis (Prentice Hall, 2010).


    Google Scholar
     

  • Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (John Wiley & Sons Inc, 2014).


    Google Scholar
     

  • Wang, M., Wang, G., Wang, S. & Jiang, M. Structure and richness of Carex meyeriana tussocks in peatlands of Northeastern China. Wetlands 38, 15–23 (2018).

    Article 

    Google Scholar
     

  • Qi, Q. et al. The driving mechanisms for community expansion in a restored Carex tussock wetland. Ecol. Ind. 121, 107040 (2021).

    Article 

    Google Scholar
     

  • Biasi, C. et al. Microtopography and plant-cover controls on nitrogen dynamics in Hummock Tundra ecosystems in Siberia. Arct. Antarct. Alp. Res. 37, 435–443 (2005).

    Article 

    Google Scholar
     

  • Diamond, J. S. et al. A little relief: Ecological functions and autogenesis of wetland microtopography. WIREs Water 8, e1493 (2021).

    Article 

    Google Scholar
     

  • van Bergen, T. J. H. M. et al. Self-facilitation and negative species interactions could drive microscale vegetation mosaic in a floating fen. J. Veg. Sci. 31, 343–354 (2020).

    Article 

    Google Scholar
     

  • Nungesser, M. K. Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol. Model. 165, 175–207 (2003).

    Article 

    Google Scholar
     

  • Johnson, L. C., Damman, A. W. H. & Malmer, N. Sphagnum macrostructure as an indicator of decay and compaction in peat cores from an ombrotrophic south Swedish peat-bog. J. Ecol. 78, 633 (1990).

    Article 

    Google Scholar
     

  • Dušek, J. et al. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agric. For. Meteorol. 149, 1524–1530 (2009).

    Article 

    Google Scholar
     

  • Klimešová, J., Danihelka, J., Chrtek, J., de Bello, F. & Herben, T. CLO-PLA: a database of clonal and bud-bank traits of the Central European flora. Ecology 98, 1179–1179 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hejný, S. Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot. Phytotaxon. 25, 245–255 (1990).

    Article 

    Google Scholar
     

  • Anderson, J. E. & Reznicek, A. A. Glyceria maxima (Poaceae) in New England. Rhodora 96, 97–101 (1994).


    Google Scholar
     

  • Lambert, J. M. Glyceria maxima (Hartm.) Holmb.. J. Ecol. 34, 310 (1947).

    Article 

    Google Scholar
     

  • Westlake, D. F. The biomass and productivity of glyceria maxima: I. Seasonal changes in biomass. J. Ecol. 54, 745 (1966).

    Article 

    Google Scholar
     

  • Westlake, D. F. et al. The Production Ecology of Wetlands: The IBP Synthesis (Cambridge University Press, 1998).


    Google Scholar
     

  • Motley, T. J. The ethnobotany of sweet flag, acorus Calamus (Araceae). Econ. Bot. 48, 397–412 (1994).

    Article 

    Google Scholar
     

  • Soukupová, L. Calamagrostis canescens: Population biology of a clonal grass invading wetlands. Oikos 63, 395–401 (1992).

    Article 

    Google Scholar
     

  • Dykyjová, D. Production ecology of Acorus calamus. Folia Geobota. Phytotaxon. 15, 29–57 (1980).

    Article 

    Google Scholar
     

  • Chambers, R. M., Meyerson, L. A. & Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64, 261–273 (1999).

    Article 

    Google Scholar
     

  • López-Rosas, H. & Moreno-Casasola, P. Invader versus natives: Effects of hydroperiod on competition between hydrophytes in a tropical freshwater marsh. Basic Appl. Ecol. 13, 40–49 (2012).

    Article 

    Google Scholar
     

  • Brázdil, R., Chromá, K., Dobrovolný, P. & Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Climatol. 29, 223–242 (2009).

    Article 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Impact of transfer learning methods and dataset characteristics on generalization in...

    The data processing, methodology, and evaluation workflow for this study are outlined in Fig. 1.(Left) Distribution of the number of recordings per species in...
    Biodiversity
    18
    minutes

    Global intraspecific diversity of marine forests of brown macroalgae predicted by...

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433. https://doi.org/10.1038/nrg.2016.58 (2016).Maggs, C. A. et al. Evaluating signatures of...
    Biodiversity
    9
    minutes

    Insect trafficking poses a risk to wildlife and human health

    Four men were recently arrested and fined for attempting to smuggle more than 5,000 ants out of Kenya. Aiming...
    Biodiversity
    3
    minutes

    Reexamination of honey bee Africanization in Mexico and other regions of...

    Ruttner, F. Biogeography and Taxonomy of Honeybees (Springer, 1988).Book  ...
    Biodiversity
    9
    minutes
    spot_imgspot_img