Precision ecology for targeted conservation action


  • IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019)

  • Vira, B. & Adams, W. M. Ecosystem services and conservation strategy: beware the silver bullet. Conserv. Lett. 2, 158–162 (2009).

    Article 

    Google Scholar
     

  • Frischmann, B. M. Two enduring lessons from Elinor Ostrom. J. Institut. Econ. 9, 387–406 (2013).

    Article 

    Google Scholar
     

  • Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).

    Article 

    Google Scholar
     

  • Bateman, I. J. et al. A review of planting principles to identify the right place for the right tree for ‘net zero plus’ woodlands: applying a place‐based natural capital framework for sustainable, efficient and equitable (SEE) decisions. People Nat. 5, 271–301 (2023).

    Article 

    Google Scholar
     

  • Matthews, K. B. et al. Not seeing the carbon for the trees? Why area-based targets for establishing new woodlands can limit or underplay their climate change mitigation benefits. Land Use Policy 97, 104690 (2020).

    Article 

    Google Scholar
     

  • Winqvist, C., Ahnström, J. & Bengtsson, J. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann. N. Y. Acad. Sci. 1249, 191–203 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tipton, E. Beyond generalization of the ATE: designing randomized trials to understand treatment effect heterogeneity. J. R. Stat. Soc. A 184, 504–521 (2021).

    Article 

    Google Scholar
     

  • Public Health England. A Brief Introduction to Realist Evaluation (Public Health England, 2021).

  • Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamont, A. et al. Identification of predicted individual treatment effects in randomized clinical trials. Stat. Methods Med. Res. 27, 142–157 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Curth, A., Peck, R. W., McKinney, E., Weatherall, J. & van der Schaar, M. Using machine learning to individualize treatment effect estimation: challenges and opportunities. Clin. Pharmacol. Ther. 115, 710–719 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W., Li, J. & Liu, L. A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Comput. Surv. 54, 162 (2022).

    Article 

    Google Scholar
     

  • Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article 

    Google Scholar
     

  • Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).

    Article 

    Google Scholar
     

  • Fisher, R. The Design of Experiments, 9th edn (Macmillan, 1971 [1935]).

  • Blair, G. et al. Community policing does not build citizen trust in police or reduce crime in the global south. Science 374, eabd3446 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pynegar, E. L., Gibbons, J. M., Asquith, N. M. & Jones, J. P. G. What role should randomized control trials play in providing the evidence base for conservation? Oryx 55, 235–244 (2021).

    Article 

    Google Scholar
     

  • Ruberg, S. J., Chen, L. & Wang, Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clin. Trials 7, 574–583 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Salditt, M., Eckes, T. & Nestler, S. A tutorial introduction to heterogeneous treatment effect estimation with meta-learners. Adm. Policy Ment. Health Ment. Health Serv. Res. 51, 650–673 (2024).

    Article 

    Google Scholar
     

  • Curth, A. Nonparametric estimation of heterogeneous treatment effects: from theory to learning algorithms. In Proc. 24th International Conference on Artificial Intelligence and Statistics (eds Banerjee, A. & Fukumizu, K.) 1810–1818 (PMLR, 2021).

  • Wager, S. & Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bica, I., Alaa, A. M., Jordon, J. & van der Schaar, M. Estimating counterfactual treatment outcomes over time through adversarially balanced representations. In Proc. 8th International Conference on Learning Representations 11790–11817 (ICLR, 2020).

  • Kreif, N., Grieve, R., Díaz, I. & Harrison, D. Evaluation of the effect of a continuous treatment: a machine learning approach with an application to treatment for traumatic brain injury. Health Econ. 24, 1213–1228 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Article 

    Google Scholar
     

  • Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual treatment effect: generalization bounds and algorithms. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3076–3085 (PMLR, 2017).

  • Lu, M., Sadiq, S., Feaster, D. J. & Ishwaran, H. Estimating individual treatment effect in observational data using random forest methods. J. Comput. Graph. Stat. 27, 209–219 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Künzel, S. R., Sekhon, J. S., Bickel, P. J. & Yu, B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc. Natl Acad. Sci. USA 116, 4156–4165 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron, A., Baio, G. & Manolopoulou, I. Estimating individual treatment effects using non-parametric regression models: a review. J. R. Stat. Soc. A 185, 1115–1149 (2022).

    Article 

    Google Scholar
     

  • Dorie, V., Hill, J., Shalit, U., Scott, M. & Cervone, D. Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. SSO Schweiz. Monatsschr. Zahnheilkd. 34, 43–68 (2019).


    Google Scholar
     

  • Okasa, G. Meta-learners for estimation of causal effects: finite sample cross-fit performance. Preprint at https://doi.org/10.48550/arXiv.2201.12692 (2022).

  • Alaa, A. M. Limits of estimating heterogeneous treatment effects: guidelines for practical algorithm design. Proc. Machine Learn. Res. 80, 129–138 (2018).

  • Fernandez-Loria, C. & Provost, F. Causal classification: treatment effect estimation vs. outcome prediction. J. Mach. Learn. Res. 23, 2573–2607 (2022).


    Google Scholar
     

  • Nie, X. & Wager, S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108, 299–319 (2021).

    Article 

    Google Scholar
     

  • McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman and Hall/CRC, 2020).

  • Tipton, E., Yeager, D. S., Iachan, R. & Schneider, B. in Experimental Methods in Survey Research: Techniques that Combine Random Sampling with Random Assignment (eds Lavrakas, P. et al.) 435–456 (Wiley, 2019).

  • Montgomery, J. M., Nyhan, B. & Torres, M. Replication data for: How conditioning on posttreatment variables can ruin your experiment and what to do about it. Harvard Dataverse https://doi.org/10.7910/DVN/EZSJ1S (2018).

  • Zhang, Y. & Imai, K. Individualized policy evaluation and learning under clustered network interference. Preprint at https://doi.org/10.48550/arXiv.2311.02467 (2023).

  • Viviano, D. Policy targeting under network interference. Rev. Econ. Stud. 92, 1257–1292 (2025).

    Article 

    Google Scholar
     

  • Curth, A., Svensson, D., Weatherall, J. & van der Schaar, M. Really doing great at estimating CATE? A critical look at ML benchmarking practices in treatment effect estimation. In Proc. 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (eds Vanschoren, J. & Yeung, S.-K.) (NeurIPS, 2021).

  • Zurell, D. et al. The virtual ecologist approach: simulating data and observers. Oikos 119, 622–635 (2010).

    Article 

    Google Scholar
     

  • Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).

    Article 

    Google Scholar
     

  • Gardner, E. et al. A family of process-based models to simulate landscape use by multiple taxa. Landsc. Ecol. 39, 102 (2024).

    Article 

    Google Scholar
     

  • Díaz-Yáñez, O. et al. Tree regeneration in models of forest dynamics: a key priority for further research. Ecosphere 15, e4807 (2024).

    Article 

    Google Scholar
     

  • Bowler, D. E. et al. Treating gaps and biases in biodiversity data as a missing data problem. Biol. Rev. 100, 50–67 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Massey, R., Berner, L. T., Foster, A. C., Goetz, S. J. & Vepakomma, U. in Boreal Forests in the Face of Climate Change: Sustainable Management (eds Girona, M. M. et al.) 637–655 (Springer, 2023).

  • Tipton, E. & Hartman, E. in Handbook of Matching and Weighting Adjustments for Causal Inference (eds Zubizarreta, J. R. et al.) 39–60 (Chapman and Hall/CRC, 2023).

  • Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, K. B. et al. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc. Ecol. 28, 1175–1192 (2013).

    Article 

    Google Scholar
     

  • Hullman, J. & Diakopoulos, N. Visualization rhetoric: framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph. 17, 2231–2240 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Alaa, A. M. & van der Schaar, M. Bayesian inference of individualized treatment effects using multi-task Gaussian processes. In Proc. 31st Annual Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 3425–3433 (NeurIPS, 2017).

  • Baier, D. & Stöcker, B. Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops. J. Bus. Econ. 92, 645–673 (2022).


    Google Scholar
     

  • Hillstrom, K. The MineThatData e-mail analytics and data mining challenge. MineThatData https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html (20 March 2008).

  • Foster, J. C., Taylor, J. M. G. & Ruberg, S. J. Subgroup identification from randomized clinical trial data. Stat. Med. 30, 2867–2880 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hill, J. L. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20, 217–240 (2011).

    Article 

    Google Scholar
     

  • Athey, S. & Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl Acad. Sci. USA 113, 7353–7360 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers, S. et al. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat. Med. 37, 1767–1787 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, P. M. Root-N-consistent semiparametric regression. Econometrica 56, 931–954 (1988).

    Article 

    Google Scholar
     

  • Kennedy, E. H. Towards optimal doubly robust estimation of heterogeneous causal effects. Electron. J. Stat. 17, 3008–3049 (2023).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Australia’s native bees struggled after the Black Summer fires – but...

    After a devastating bushfire, efforts to help nature recover typically focus on vertebrates and plants. Yet extreme fires can...
    Biodiversity
    4
    minutes

    Threat reduction and targeted recovery are both essential

    Threat reduction and targeted recovery are both essential Source link
    Biodiversity
    0
    minutes

    Book review: ‘The Dales Slipper: Past-Present’ by Paul Redshaw

    Tomorrow I head to China for two months of writing, field work, talks, and student discussions at the Kunming Institute of Botany in...
    Biodiversity
    2
    minutes

    anti-colonialism, conservation and climate change

    Nature’s Memory: Behind the Scenes at the World’s Natural History Museums Jack Ashby Allen Lane (2025)Natural history museums are crucial for conservation...
    Biodiversity
    5
    minutes
    spot_imgspot_img