IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019)
Vira, B. & Adams, W. M. Ecosystem services and conservation strategy: beware the silver bullet. Conserv. Lett. 2, 158–162 (2009).
Frischmann, B. M. Two enduring lessons from Elinor Ostrom. J. Institut. Econ. 9, 387–406 (2013).
Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).
Bateman, I. J. et al. A review of planting principles to identify the right place for the right tree for ‘net zero plus’ woodlands: applying a place‐based natural capital framework for sustainable, efficient and equitable (SEE) decisions. People Nat. 5, 271–301 (2023).
Matthews, K. B. et al. Not seeing the carbon for the trees? Why area-based targets for establishing new woodlands can limit or underplay their climate change mitigation benefits. Land Use Policy 97, 104690 (2020).
Winqvist, C., Ahnström, J. & Bengtsson, J. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann. N. Y. Acad. Sci. 1249, 191–203 (2012).
Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).
Tipton, E. Beyond generalization of the ATE: designing randomized trials to understand treatment effect heterogeneity. J. R. Stat. Soc. A 184, 504–521 (2021).
Public Health England. A Brief Introduction to Realist Evaluation (Public Health England, 2021).
Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).
Lamont, A. et al. Identification of predicted individual treatment effects in randomized clinical trials. Stat. Methods Med. Res. 27, 142–157 (2018).
Curth, A., Peck, R. W., McKinney, E., Weatherall, J. & van der Schaar, M. Using machine learning to individualize treatment effect estimation: challenges and opportunities. Clin. Pharmacol. Ther. 115, 710–719 (2024).
Zhang, W., Li, J. & Liu, L. A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Comput. Surv. 54, 162 (2022).
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).
Fisher, R. The Design of Experiments, 9th edn (Macmillan, 1971 [1935]).
Blair, G. et al. Community policing does not build citizen trust in police or reduce crime in the global south. Science 374, eabd3446 (2021).
Pynegar, E. L., Gibbons, J. M., Asquith, N. M. & Jones, J. P. G. What role should randomized control trials play in providing the evidence base for conservation? Oryx 55, 235–244 (2021).
Ruberg, S. J., Chen, L. & Wang, Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clin. Trials 7, 574–583 (2010).
Salditt, M., Eckes, T. & Nestler, S. A tutorial introduction to heterogeneous treatment effect estimation with meta-learners. Adm. Policy Ment. Health Ment. Health Serv. Res. 51, 650–673 (2024).
Curth, A. Nonparametric estimation of heterogeneous treatment effects: from theory to learning algorithms. In Proc. 24th International Conference on Artificial Intelligence and Statistics (eds Banerjee, A. & Fukumizu, K.) 1810–1818 (PMLR, 2021).
Wager, S. & Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018).
Bica, I., Alaa, A. M., Jordon, J. & van der Schaar, M. Estimating counterfactual treatment outcomes over time through adversarially balanced representations. In Proc. 8th International Conference on Learning Representations 11790–11817 (ICLR, 2020).
Kreif, N., Grieve, R., Díaz, I. & Harrison, D. Evaluation of the effect of a continuous treatment: a machine learning approach with an application to treatment for traumatic brain injury. Health Econ. 24, 1213–1228 (2015).
Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).
Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021).
Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual treatment effect: generalization bounds and algorithms. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3076–3085 (PMLR, 2017).
Lu, M., Sadiq, S., Feaster, D. J. & Ishwaran, H. Estimating individual treatment effect in observational data using random forest methods. J. Comput. Graph. Stat. 27, 209–219 (2018).
Künzel, S. R., Sekhon, J. S., Bickel, P. J. & Yu, B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc. Natl Acad. Sci. USA 116, 4156–4165 (2019).
Caron, A., Baio, G. & Manolopoulou, I. Estimating individual treatment effects using non-parametric regression models: a review. J. R. Stat. Soc. A 185, 1115–1149 (2022).
Dorie, V., Hill, J., Shalit, U., Scott, M. & Cervone, D. Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. SSO Schweiz. Monatsschr. Zahnheilkd. 34, 43–68 (2019).
Okasa, G. Meta-learners for estimation of causal effects: finite sample cross-fit performance. Preprint at https://doi.org/10.48550/arXiv.2201.12692 (2022).
Alaa, A. M. Limits of estimating heterogeneous treatment effects: guidelines for practical algorithm design. Proc. Machine Learn. Res. 80, 129–138 (2018).
Fernandez-Loria, C. & Provost, F. Causal classification: treatment effect estimation vs. outcome prediction. J. Mach. Learn. Res. 23, 2573–2607 (2022).
Nie, X. & Wager, S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108, 299–319 (2021).
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman and Hall/CRC, 2020).
Tipton, E., Yeager, D. S., Iachan, R. & Schneider, B. in Experimental Methods in Survey Research: Techniques that Combine Random Sampling with Random Assignment (eds Lavrakas, P. et al.) 435–456 (Wiley, 2019).
Montgomery, J. M., Nyhan, B. & Torres, M. Replication data for: How conditioning on posttreatment variables can ruin your experiment and what to do about it. Harvard Dataverse https://doi.org/10.7910/DVN/EZSJ1S (2018).
Zhang, Y. & Imai, K. Individualized policy evaluation and learning under clustered network interference. Preprint at https://doi.org/10.48550/arXiv.2311.02467 (2023).
Viviano, D. Policy targeting under network interference. Rev. Econ. Stud. 92, 1257–1292 (2025).
Curth, A., Svensson, D., Weatherall, J. & van der Schaar, M. Really doing great at estimating CATE? A critical look at ML benchmarking practices in treatment effect estimation. In Proc. 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (eds Vanschoren, J. & Yeung, S.-K.) (NeurIPS, 2021).
Zurell, D. et al. The virtual ecologist approach: simulating data and observers. Oikos 119, 622–635 (2010).
Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).
Gardner, E. et al. A family of process-based models to simulate landscape use by multiple taxa. Landsc. Ecol. 39, 102 (2024).
Díaz-Yáñez, O. et al. Tree regeneration in models of forest dynamics: a key priority for further research. Ecosphere 15, e4807 (2024).
Bowler, D. E. et al. Treating gaps and biases in biodiversity data as a missing data problem. Biol. Rev. 100, 50–67 (2025).
Massey, R., Berner, L. T., Foster, A. C., Goetz, S. J. & Vepakomma, U. in Boreal Forests in the Face of Climate Change: Sustainable Management (eds Girona, M. M. et al.) 637–655 (Springer, 2023).
Tipton, E. & Hartman, E. in Handbook of Matching and Weighting Adjustments for Causal Inference (eds Zubizarreta, J. R. et al.) 39–60 (Chapman and Hall/CRC, 2023).
Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).
Jones, K. B. et al. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc. Ecol. 28, 1175–1192 (2013).
Hullman, J. & Diakopoulos, N. Visualization rhetoric: framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph. 17, 2231–2240 (2011).
Alaa, A. M. & van der Schaar, M. Bayesian inference of individualized treatment effects using multi-task Gaussian processes. In Proc. 31st Annual Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 3425–3433 (NeurIPS, 2017).
Baier, D. & Stöcker, B. Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops. J. Bus. Econ. 92, 645–673 (2022).
Hillstrom, K. The MineThatData e-mail analytics and data mining challenge. MineThatData https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html (20 March 2008).
Foster, J. C., Taylor, J. M. G. & Ruberg, S. J. Subgroup identification from randomized clinical trial data. Stat. Med. 30, 2867–2880 (2011).
Hill, J. L. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20, 217–240 (2011).
Athey, S. & Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl Acad. Sci. USA 113, 7353–7360 (2016).
Powers, S. et al. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat. Med. 37, 1767–1787 (2018).
Robinson, P. M. Root-N-consistent semiparametric regression. Econometrica 56, 931–954 (1988).
Kennedy, E. H. Towards optimal doubly robust estimation of heterogeneous causal effects. Electron. J. Stat. 17, 3008–3049 (2023).