Precision ecology for targeted conservation action


  • IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019)

  • Vira, B. & Adams, W. M. Ecosystem services and conservation strategy: beware the silver bullet. Conserv. Lett. 2, 158–162 (2009).

    Article 

    Google Scholar
     

  • Frischmann, B. M. Two enduring lessons from Elinor Ostrom. J. Institut. Econ. 9, 387–406 (2013).

    Article 

    Google Scholar
     

  • Spake, R. et al. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2, 90–97 (2019).

    Article 

    Google Scholar
     

  • Bateman, I. J. et al. A review of planting principles to identify the right place for the right tree for ‘net zero plus’ woodlands: applying a place‐based natural capital framework for sustainable, efficient and equitable (SEE) decisions. People Nat. 5, 271–301 (2023).

    Article 

    Google Scholar
     

  • Matthews, K. B. et al. Not seeing the carbon for the trees? Why area-based targets for establishing new woodlands can limit or underplay their climate change mitigation benefits. Land Use Policy 97, 104690 (2020).

    Article 

    Google Scholar
     

  • Winqvist, C., Ahnström, J. & Bengtsson, J. Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann. N. Y. Acad. Sci. 1249, 191–203 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, P. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tipton, E. Beyond generalization of the ATE: designing randomized trials to understand treatment effect heterogeneity. J. R. Stat. Soc. A 184, 504–521 (2021).

    Article 

    Google Scholar
     

  • Public Health England. A Brief Introduction to Realist Evaluation (Public Health England, 2021).

  • Shackelford, G. E. et al. Dynamic meta-analysis: a method of using global evidence for local decision making. BMC Biol. 19, 33 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamont, A. et al. Identification of predicted individual treatment effects in randomized clinical trials. Stat. Methods Med. Res. 27, 142–157 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Curth, A., Peck, R. W., McKinney, E., Weatherall, J. & van der Schaar, M. Using machine learning to individualize treatment effect estimation: challenges and opportunities. Clin. Pharmacol. Ther. 115, 710–719 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W., Li, J. & Liu, L. A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Comput. Surv. 54, 162 (2022).

    Article 

    Google Scholar
     

  • Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Article 

    Google Scholar
     

  • Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).

    Article 

    Google Scholar
     

  • Fisher, R. The Design of Experiments, 9th edn (Macmillan, 1971 [1935]).

  • Blair, G. et al. Community policing does not build citizen trust in police or reduce crime in the global south. Science 374, eabd3446 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pynegar, E. L., Gibbons, J. M., Asquith, N. M. & Jones, J. P. G. What role should randomized control trials play in providing the evidence base for conservation? Oryx 55, 235–244 (2021).

    Article 

    Google Scholar
     

  • Ruberg, S. J., Chen, L. & Wang, Y. The mean does not mean as much anymore: finding sub-groups for tailored therapeutics. Clin. Trials 7, 574–583 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Salditt, M., Eckes, T. & Nestler, S. A tutorial introduction to heterogeneous treatment effect estimation with meta-learners. Adm. Policy Ment. Health Ment. Health Serv. Res. 51, 650–673 (2024).

    Article 

    Google Scholar
     

  • Curth, A. Nonparametric estimation of heterogeneous treatment effects: from theory to learning algorithms. In Proc. 24th International Conference on Artificial Intelligence and Statistics (eds Banerjee, A. & Fukumizu, K.) 1810–1818 (PMLR, 2021).

  • Wager, S. & Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bica, I., Alaa, A. M., Jordon, J. & van der Schaar, M. Estimating counterfactual treatment outcomes over time through adversarially balanced representations. In Proc. 8th International Conference on Learning Representations 11790–11817 (ICLR, 2020).

  • Kreif, N., Grieve, R., Díaz, I. & Harrison, D. Evaluation of the effect of a continuous treatment: a machine learning approach with an application to treatment for traumatic brain injury. Health Econ. 24, 1213–1228 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).

    Article 

    Google Scholar
     

  • Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual treatment effect: generalization bounds and algorithms. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3076–3085 (PMLR, 2017).

  • Lu, M., Sadiq, S., Feaster, D. J. & Ishwaran, H. Estimating individual treatment effect in observational data using random forest methods. J. Comput. Graph. Stat. 27, 209–219 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Künzel, S. R., Sekhon, J. S., Bickel, P. J. & Yu, B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc. Natl Acad. Sci. USA 116, 4156–4165 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caron, A., Baio, G. & Manolopoulou, I. Estimating individual treatment effects using non-parametric regression models: a review. J. R. Stat. Soc. A 185, 1115–1149 (2022).

    Article 

    Google Scholar
     

  • Dorie, V., Hill, J., Shalit, U., Scott, M. & Cervone, D. Automated versus do-it-yourself methods for causal inference: lessons learned from a data analysis competition. SSO Schweiz. Monatsschr. Zahnheilkd. 34, 43–68 (2019).


    Google Scholar
     

  • Okasa, G. Meta-learners for estimation of causal effects: finite sample cross-fit performance. Preprint at https://doi.org/10.48550/arXiv.2201.12692 (2022).

  • Alaa, A. M. Limits of estimating heterogeneous treatment effects: guidelines for practical algorithm design. Proc. Machine Learn. Res. 80, 129–138 (2018).

  • Fernandez-Loria, C. & Provost, F. Causal classification: treatment effect estimation vs. outcome prediction. J. Mach. Learn. Res. 23, 2573–2607 (2022).


    Google Scholar
     

  • Nie, X. & Wager, S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108, 299–319 (2021).

    Article 

    Google Scholar
     

  • McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman and Hall/CRC, 2020).

  • Tipton, E., Yeager, D. S., Iachan, R. & Schneider, B. in Experimental Methods in Survey Research: Techniques that Combine Random Sampling with Random Assignment (eds Lavrakas, P. et al.) 435–456 (Wiley, 2019).

  • Montgomery, J. M., Nyhan, B. & Torres, M. Replication data for: How conditioning on posttreatment variables can ruin your experiment and what to do about it. Harvard Dataverse https://doi.org/10.7910/DVN/EZSJ1S (2018).

  • Zhang, Y. & Imai, K. Individualized policy evaluation and learning under clustered network interference. Preprint at https://doi.org/10.48550/arXiv.2311.02467 (2023).

  • Viviano, D. Policy targeting under network interference. Rev. Econ. Stud. 92, 1257–1292 (2025).

    Article 

    Google Scholar
     

  • Curth, A., Svensson, D., Weatherall, J. & van der Schaar, M. Really doing great at estimating CATE? A critical look at ML benchmarking practices in treatment effect estimation. In Proc. 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (eds Vanschoren, J. & Yeung, S.-K.) (NeurIPS, 2021).

  • Zurell, D. et al. The virtual ecologist approach: simulating data and observers. Oikos 119, 622–635 (2010).

    Article 

    Google Scholar
     

  • Bocedi, G. et al. RangeShifter 2.0: an extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Ecography 44, 1453–1462 (2021).

    Article 

    Google Scholar
     

  • Gardner, E. et al. A family of process-based models to simulate landscape use by multiple taxa. Landsc. Ecol. 39, 102 (2024).

    Article 

    Google Scholar
     

  • Díaz-Yáñez, O. et al. Tree regeneration in models of forest dynamics: a key priority for further research. Ecosphere 15, e4807 (2024).

    Article 

    Google Scholar
     

  • Bowler, D. E. et al. Treating gaps and biases in biodiversity data as a missing data problem. Biol. Rev. 100, 50–67 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Massey, R., Berner, L. T., Foster, A. C., Goetz, S. J. & Vepakomma, U. in Boreal Forests in the Face of Climate Change: Sustainable Management (eds Girona, M. M. et al.) 637–655 (Springer, 2023).

  • Tipton, E. & Hartman, E. in Handbook of Matching and Weighting Adjustments for Causal Inference (eds Zubizarreta, J. R. et al.) 39–60 (Chapman and Hall/CRC, 2023).

  • Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12, 1100–1122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, K. B. et al. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc. Ecol. 28, 1175–1192 (2013).

    Article 

    Google Scholar
     

  • Hullman, J. & Diakopoulos, N. Visualization rhetoric: framing effects in narrative visualization. IEEE Trans. Vis. Comput. Graph. 17, 2231–2240 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Alaa, A. M. & van der Schaar, M. Bayesian inference of individualized treatment effects using multi-task Gaussian processes. In Proc. 31st Annual Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 3425–3433 (NeurIPS, 2017).

  • Baier, D. & Stöcker, B. Profit uplift modeling for direct marketing campaigns: approaches and applications for online shops. J. Bus. Econ. 92, 645–673 (2022).


    Google Scholar
     

  • Hillstrom, K. The MineThatData e-mail analytics and data mining challenge. MineThatData https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html (20 March 2008).

  • Foster, J. C., Taylor, J. M. G. & Ruberg, S. J. Subgroup identification from randomized clinical trial data. Stat. Med. 30, 2867–2880 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Hill, J. L. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20, 217–240 (2011).

    Article 

    Google Scholar
     

  • Athey, S. & Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl Acad. Sci. USA 113, 7353–7360 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers, S. et al. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat. Med. 37, 1767–1787 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, P. M. Root-N-consistent semiparametric regression. Econometrica 56, 931–954 (1988).

    Article 

    Google Scholar
     

  • Kennedy, E. H. Towards optimal doubly robust estimation of heterogeneous causal effects. Electron. J. Stat. 17, 3008–3049 (2023).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Biodiversity change under human depopulation in Japan

    Study areaAlongside other countries, over the past 100 years, significant loss of natural and semi-natural habitat has occurred in Japan, mainly because of...
    Biodiversity
    13
    minutes

    Status of endangered large prey predators following civil unrest in a...

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, 1400253 (2015).ADS  ...
    Biodiversity
    8
    minutes

    Ancient fossils show how the last mass extinction forever scrambled the...

    About 66 million years ago – perhaps on a downright unlucky day in May – an asteroid smashed into...
    Biodiversity
    6
    minutes

    Australia’s government is pledging better protection for our vulnerable seas – but...

    Ahead of this week’s crucial United Nations ocean conference, federal Environment Minister Murray Watt promised that by 2030, 30%...
    Biodiversity
    4
    minutes
    spot_imgspot_img