Predicting habitat suitability of Illicium griffithii under climate change scenarios using an ensemble modeling approach


  • Borah, R. et al. Genetic diversity and population structure assessment using molecular markers and SPAR approach in Illicium griffithii, a medicinally important endangered species of Northeast India. J. Genet. Eng. Biotechnol. 19, 118. https://doi.org/10.1186/s43141-021-00211-5 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ved, D. K., Kinhal, G. A., Ravikumar, K., Sankar, R. V. & Haridasan, K. Conservation assessment and management prioritisation (CAMP) for wild medicinal plants of North-East India. (2005).

  • Borah, R., Malngiang, L., Upadhaya, K. & Choudhary, H. Seed dormancy, viability and germination of Illicium griffithii: A threatened medicinal plant of Northeast India. J. Saudi Soc. Agric. Sci. 23, 160–167. https://doi.org/10.1016/j.jssas.2023.10.005 (2024).

    Article 

    Google Scholar
     

  • Vijayakumar, A. et al. Phytochemical analysis and in vitro antimicrobial activity of Illicium griffithii Hook. F. & Thoms extracts. Asian Pac. J. Trop. Dis. 2, 190–199. https://doi.org/10.1016/S2222-1808(12)60045-0 (2012).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Paul, A., Kalita, J., Khan, M. L. & Tripathi, O. P. Illicium griffithii Hook. f. & Thoms. A potential source of natural off-farm income to the rural people of Arunachal Himalaya, India. (2013).

  • Mukhia, P. K., Tangbi, S. D. & Tshering, K. D. Will the sale of Illicium griffithii reduce poverty in Aja Nye and Yabrang communities. A Ser. case Stud. Community based For. Nat. Resour. Manag. Bhutan Ed. by T Meyer, P Stephens HJJ Beukeboom (Pemaas Graph. Publ. Soc. For. Div. Dep. For. Minist. Agric. R. Gov 1–18 http://www.moa.gov.bt/downloads (2006).

  • Shang, J. et al. Environmental factors influencing potential distribution of Schisandra sphenanthera and its accumulation of medicinal components. Front. Plant. Sci. 14, 1302417. https://doi.org/10.3389/fpls.2023.1302417 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. et al. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 127, 107762. https://doi.org/10.1016/j.ecolind.2021.107762 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Luo, J., Ma, Y., Liu, Y., Zhu, D. & Guo, X. Predicting Polygonum capitatum distribution in China across climate scenarios using maxent modeling. Sci. Rep. 14, 1–15. https://doi.org/10.1038/s41598-024-71104-z (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thampan, J., Srivastava, J., Saraf, P. N. & Samal, P. Habitat distribution modelling to identify areas of high conservation value under climate change for an endangered arid land tree Tecomella undulata. J. Arid Environ. 227, 105317. https://doi.org/10.1016/j.jaridenv.2025.105317 (2025).

    Article 

    Google Scholar
     

  • Adeyemo, S. M. & Granger, J. J. Habitat suitability model and range shift analysis for American chestnut (Castanea dentata) in the united States. Trees, Forest and People 11, 100360. https://doi.org/10.1016/j.tfp.2022.100360 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Mammola, S. & Leroy, B. Applying species distribution models to caves and other subterranean habitats. 1194–1208 https://doi.org/10.1111/ecog.03464 (2018).

  • Kaky, E. & Gilbert, F. Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J. Arid Environ. 135, 140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kufa, C. A., Bekele, A. & Atickem, A. Impacts of climate change on predicted habitat suitability and distribution of Djaffa mountains Guereza (Colobus guereza gallarum, neumann 1902) using maxent algorithm in Eastern Ethiopian Highland. Glob Ecol. Conserv. 35, e02094. https://doi.org/10.1016/j.gecco.2022.e02094 (2022).

    Article 

    Google Scholar
     

  • Padalia, H., Srivastava, V. & Kushwaha, S. P. S. Modeling potential Invasion range of alien Invasive species, Hyptis suaveolens (L.) poit. in India: comparison of maxent and GARP. Ecol. Inf. 22, 36–43. https://doi.org/10.2307/2344614 (2014).

    Article 

    Google Scholar
     

  • Patni, B., Bhattacharyya, M., kumari, A. & purohit, V. K. Alarming influence of climate change and compromising quality of medicinal plants. Plant. Physiol. Rep. 27, 1–10. https://doi.org/10.1007/s40502-021-00616-x (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shen, T., Yu, H. & Wang, Y. Z. Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: take Gentiana rigescens as an example. Ecol. Indic. 123, 107376. https://doi.org/10.1016/j.ecolind.2021.107376 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Forester, B. R., Dechaine, E. G. & Bunn, A. G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers. Distrib. 19, 1480–1495. https://doi.org/10.1111/ddi.12098 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, H. T. & Wang, W. T. Prediction of the potential distribution of the endangered species Meconopsis punicea Maxim under future climate change based on four species distribution models. Plants 12, https://doi.org/10.3390/plants12061376 (2023).

  • Koo, K. A. et al. Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties. Ecol. Modell. 353, 17–27. https://doi.org/10.1016/j.ecolmodel.2016.10.007 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wenger, S. J. et al. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Glob Chang. Biol. 19, 3343–3354. https://doi.org/10.1111/gcb.12294 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Devi, V., Fulekar, M. H., Charles, B., Reddy, C. S. & Pathak, B. Predicting the habitat suitability and species richness of plants of great Himalayan National park under different climate change scenarios. Environ. Monit. Assess. 196, 1–14. https://doi.org/10.1007/s10661-024-13290-x (2024).

    Article 

    Google Scholar
     

  • Hao, T., Elith, J., Guillera-Arroita, G. & Lahoz-Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839–852. https://doi.org/10.1111/ddi.12892 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between ensemble and maxent species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inf. 60, 101150. https://doi.org/10.1016/j.ecoinf.2020.101150 (2020).

    Article 

    Google Scholar
     

  • Hysen, L., Nayeri, D., Cushman, S. & Wan, H. Y. Background sampling for multi-scale ensemble habitat selection modeling: does the number of points matter? Ecol. Inf. 72, 101914. https://doi.org/10.1016/j.ecoinf.2022.101914 (2022).

    Article 

    Google Scholar
     

  • Bhuyan, A. et al. Assessing current and future potential habitat of vatica lanceaefolia (Roxb.) Blume, a critically endangered tree species of Northeastern. Theo Appl. Climatol. 156, 1–13. https://doi.org/10.1007/s00704-025-05369-3 (2025).

    Article 
    MATH 

    Google Scholar
     

  • Tiwary, R., Singh, P. P., Adhikari, D., Behera, M. D. & Barik, S. K. Vulnerability assessment of Taxus wallichiana in the Indian Himalayan region to future climate change using species niche models and global climate models under future climate scenarios. Biodivers. Conserv. 3475–3494. https://doi.org/10.1007/s10531-024-02859-0 (2024).

  • Abedin, I. et al. Distribution model reveals rapid decline in habitat extent for endangered hispid Hare: implications for wildlife management and conservation planning in future climate change scenarios. Biology (Basel) 13. https://doi.org/10.3390/biology13030198 (2024).

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, D. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, N. & Shukla, S. P. Geography and Development of Hill Areas: A Case Study of Arunachal Pradesh (Mittal, 1992).

  • Halder, S. et al. A review on diversity of floristic elements in the Indian state of Arunachal Pradesh. J. Bioresour. 1, 1–18. https://doi.org/10.5281/zenod0.12578344 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Chatterjee, S., Saikia, A., Dutta, P., Ghosh, D. & Worah, S. Review of biodiversity in Northeast India. Backgr. Pap. 13, (2006).

  • Maji, A. K. et al. Soil information system of Arunachal Pradesh in a GIS environment for land use planning. Int. J. Appl. Earth Obs. Geoinf. 3, 69–77. https://doi.org/10.1016/S0303-2434(01)85023-6 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Dhar, O. N. & Nandargi, S. Rainfall distribution over the Arunachal Pradesh Himalayas. Weather 59, 155–157. https://doi.org/10.1256/wea.87.03 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Webb, N. P. & Strong, C. L. Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Res. 3, 165–179. https://doi.org/10.1016/j.aeolia.2011.03.002 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Tan, Z. X., Lal, R., Smeck, N. E. & Calhoun, F. G. Relationships between surface soil organic carbon pool and site variables. Geoderma 121, 187–195. https://doi.org/10.1016/j.geoderma.2003.11.003 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. SpThin: an R package for Spatial thinning of species occurrence records for use in ecological niche models. Ecogr. (Cop) 38, 541–545. https://doi.org/10.1111/ecog.01132 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Team, R. C. R: A Language and Environment for Statistical Computing (4.1. 1) (R Foundation for Statistical Computing, 2021).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).

    Article 

    Google Scholar
     

  • Mukherjee, T. et al. Adaptive spatial planning of protected area network for conserving the Himalayan brown bear. Sci. Total Environ. 754, 142416. https://doi.org/10.1016/j.scitotenv.2020.142416 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Poggio, L. et al. SoilGrids 2.0: producing soil information for the Globe with quantified spatial uncertainty. Soil 7, 217–240. https://doi.org/10.5194/soil-7-217-2021 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Abedin, I. et al. Fragile futures: evaluating habitat and climate change response of hog badgers (Mustelidae: Arctonyx) in the conservation landscape of Mainland Asia. Ecol. Evol. 14, 1–20. https://doi.org/10.1002/ece3.70160 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge University Press, 2017).

  • Zurell, D. et al. Testing species assemblage predictions from stacked and joint species distribution models. J. Biogeogr. 47, 101–113. https://doi.org/10.1111/jbi.13608 (2020).

    Article 

    Google Scholar
     

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecogr. (Cop) 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • De Marco, P. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS One 13, e0202403. https://doi.org/10.1371/journal.pone.0202403 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schmitt, S., Pouteau, R., Justeau, D., De Boissieu, F. & Birnbaum, P. Ssdm: an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803. https://doi.org/10.1111/2041-210X.12841 (2017).

    Article 

    Google Scholar
     

  • Meller, L. et al. Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Divers. Distrib. 20, 309–321. https://doi.org/10.1111/ddi.12162 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R Stat. Soc. Ser. Stat. Soc. 135, 370–384 (1972).

    MATH 

    Google Scholar
     

  • Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 19, 1–67. https://doi.org/10.1214/aos/1176347963 (1991).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Proceedings of the twenty-first international conference on Machine learning 83 https://doi.org/10.1145/1015330.1015412 (2004).

  • Shaik, A. B. & Srinivasan, S. A brief survey on random forest ensembles in classification model. in International Conference on Innovative Computing and Communications: Proceedings of ICICC 2018, 2 253–260 https://doi.org/10.1007/978-981-13-2354-6_27 (Springer, 2019).

  • Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 13, 18–28. https://doi.org/10.1109/5254.708428 (1998).

    Article 
    MATH 

    Google Scholar
     

  • Johnson, S. E., Delmore, K. E., Brown, K. A., Wyman, T. M. & Louis, E. E. Niche divergence in a brown lemur (Eulemur spp.) hybrid zone: using ecological niche models to test models of stability. Int. J. Primatol. 37, 69–88. https://doi.org/10.1007/s10764-015-9872-y (2016).

    Article 

    Google Scholar
     

  • Kamilar, J. M. & Tecot, S. R. Anthropogenic and climatic effects on the distribution of Eulemur species: an ecological niche modeling approach. Int. J. Primatol. 37, 47–68. https://doi.org/10.1007/s10764-015-9875-8 (2016).

    Article 

    Google Scholar
     

  • Kundu, S. et al. Matrilineal phylogeny and habitat suitability of the endangered spotted pond turtle (Geoclemys hamiltonii; testudines: Geoemydidae): a two-dimensional approach to forecasting future conservation consequences. PeerJ 11, e15975. https://doi.org/10.7717/peerj.15975 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Changjun, G. et al. Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecol. Evol. 11, 12092–12113. https://doi.org/10.1002/ece3.7974 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lin, Y. P. et al. Assessing uncertainty and performance of ensemble conservation planning strategies. Landsc. Urban Plan. 169, 57–69. https://doi.org/10.1016/j.landurbplan.2017.08.007 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Rew, J., Cho, Y., Moon, J. & Hwang, E. Habitat suitability estimation using a two-stage ensemble approach. Remote Sens. 12, 1475. https://doi.org/10.3390/RS12091475 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).

    Article 
    MATH 

    Google Scholar
     

  • Jung, J., Bin, Park, G. E., Kim, H. J., Huh, J. H. & Um, Y. Predicting the habitat suitability for Angelica gigas medicinal herb using an ensemble species distribution model. Forests 14, 592. https://doi.org/10.3390/f14030592 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Zenebe, G., Zenebe, A., Birhane, E., Girma, A. & Shiferaw, H. Revealing suitable habitats for Juniperus procera and Olea europaea tree species in the remnant dry Afromontane forests of Ethiopia: insights from ensemble species distribution modeling approach. Ecol. Evol. 14, e70343. https://doi.org/10.1002/ece3.70343 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, D. S., Choi, W., Il, Nam, Y. & Park, Y. S. Predicting potential occurrence of pine wilt disease based on environmental factors in South Korea using machine learning algorithms. Ecol. Inf. 64, 101378. https://doi.org/10.1016/j.ecoinf.2021.101378 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Bedair, H., Shaltout, K. & Halmy, M. W. A. Stacked machine learning models for predicting species richness and endemism for mediterranean endemic plants in the mareotis subsector in Egypt. Plant. Ecol. 224, 1113–1126. https://doi.org/10.1007/s11258-023-01366-6 (2023).

    Article 

    Google Scholar
     

  • Xue, J. et al. Transmission risk predicting for schistosomiasis in Mainland China by exploring ensemble ecological niche modeling. Trop. Med. Infect. Dis. 8, 24. https://doi.org/10.3390/tropicalmed8010024 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Powell-Romero, F., Fountain‐Jones, N. M., Norberg, A. & Clark, N. J. Improving the predictability and interpretability of co‐occurrence modelling through feature‐based joint species distribution ensembles. Methods Ecol. Evol. 14, 146–161. https://doi.org/10.1111/2041-210X.13915 (2023).

    Article 

    Google Scholar
     

  • Amiri, M., Tarkesh, M., Jafari, R. & Jetschke, G. Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: which side can perform better in species distribution modeling? Ecol. Inf. 57, 101060. https://doi.org/10.1016/j.ecoinf.2020.101060 (2020).

    Article 

    Google Scholar
     

  • Zhong, Y. et al. Shrinking habitats and native species loss under climate change: A multifactorial risk assessment of China’s inland wetlands. Earth’s Futur. 10, eEF002630 https://doi.org/10.1029/2021EF002630 (2021).

  • Chang, B. et al. Predicting the potential distribution of Taxus cuspidata in Northeastern China based on the ensemble model. Ecosphere 15, e4965. https://doi.org/10.1002/ecs2.4965 (2024).

    Article 

    Google Scholar
     

  • Dakhil, M. A., El-Barougy, R. F., El-Keblawy, A. & Farahat, E. A. Clay and climatic variability explain the global potential distribution of Juniperus phoenicea toward restoration planning. Sci. Rep. 12, 13199. https://doi.org/10.1038/s41598-022-16046-0 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C. et al. Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques. Ecol. Modell. 306, 67–75. https://doi.org/10.1016/j.ecolmodel.2014.08.002 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Crimmins, S. M., Dobrowski, S. Z. & Mynsberge, A. R. Evaluating ensemble forecasts of plant species distributions under climate change. Ecol. Modell. 266, 126–130. https://doi.org/10.1016/j.ecolmodel.2013.07.006 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Duchok, R., Kent, K., Khumbongmayum, A. D., Paul, A. & Khan, M. L. Population structure and regeneration status of medicinal tree Illicium griffithii in relation to disturbance gradients in temperate broad-leaved forest of Arunachal Pradesh. Curr. Sci. 673–676 https://www.jstor.org/stable/24111166 (2005).

  • Angami, T. et al. Star Anise (Illicium griffithii Hook. F. and Thoms.): a tree spice from high altitude region of Arunachal Pradesh. New. Visions Biol. Sci. 2, 123–129. https://doi.org/10.9734/bpi/nvbs/v2/4128f (2021).

    Article 

    Google Scholar
     

  • Saha, D. & Sundriyal, R. C. Perspectives of tribal communities on NTFP resource use in a global hotspot: implications for adaptive management. Perspect. (Montclair) 3, http://www.iiste.org (2013).

  • Bapu, T. D. & Nimasow, G. An assessment of the population status of the threatened medicinal plant Illicium griffithii Hook. F. & Thomson in West Kameng district of Arunachal Pradesh, India. J. Threat. Taxa 13, 17504–17512. https://doi.org/10.11609/jott.6082.13.1.17504-17512 (2021).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    The global determinants of climate niche breadth in birds

    We begin our analyses by leveraging the highest quality breeding range maps available for birds, inferred with state-of-the-art species distribution models and powered...
    Biodiversity
    18
    minutes

    Allowing forests to regrow and regenerate is a great way to...

    Queensland is widely known as the land clearing capital of Australia. But what’s not so well known is many...
    Biodiversity
    4
    minutes

    ‘De-extinction’ of dire wolves promotes false hope: technology can’t undo extinction

    Over the past week, the media have been inundated with news of the “de-extinction” of the dire wolf (Aenocyon...
    Biodiversity
    3
    minutes

    NDVI and vegetation volume as predictors of urban bird diversity

    UNHSP. World Cities Report 2022. (2022). https://unhabitat.org/wcr/.Lai, H., Flies, E. J., Weinstein, P. & Woodward, A. The impact of green space and biodiversity...
    Biodiversity
    10
    minutes
    spot_imgspot_img