Predicting the potential distribution of Podophyllum hexandrum Royle in the Himalaya under CMIP6 climate projections


  • Shilky et al. Climate change: A major challenge to biodiversity conservation, ecological services, and sustainable development. in The Palgrave Handbook of Socio-Ecological Resilience in the Face of Climate Change 577–592 (Springer Nature Singapore, 2023). https://doi.org/10.1007/978-981-99-2206-2_33.

  • Zhang, M. et al. Influence of the environment on the distribution and quality of Gentiana dahurica Fisch. Front. Plant Sci. 12, 706822 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Spatiotemporal distribution prediction of the relict and endangered plant Tetraena mongolica in inner Mongolia, China under climate change. Sci. Rep. 14, 28478 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y., Lu, X. & Zhang, G. Potentially differential impacts on niche overlap between Chinese endangered Zelkova schneideriana and its associated tree species under climate change. Front. Ecol. Evol. 11, 1218149 (2023).


    Google Scholar
     

  • Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change and l natural resources and ecosystem services area, institute for global environmental strategies (IGES). Kanagawa 240–0115(117), 30882–30891 (2020).


    Google Scholar
     

  • Cai, H. & Zhang, G. Predicting the potential distribution of rare and endangered Emmenopterys henryi in China under climate change. Ecol. Evol. 14, e70403 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, R. et al. Predicting the impacts of climate change on the geographic distribution of moso bamboo in China based on biomod2 model. Eur. J. For. Res. 143, 1499–1512 (2024).


    Google Scholar
     

  • Hazarika, A. et al. MaxEnt modeling for habitat suitability assessment of threatened Dipterocarpus species in the Indian East Himalayas. Biodivers. Conserv. https://doi.org/10.1007/s10531-024-02997-5 (2025).


    Google Scholar
     

  • Li, X. et al. Prediction of potential distribution area of two parapatric species in Triosteum under climate change. Sustainability (Switzerland) 15, 5604 (2023).


    Google Scholar
     

  • Javeed, B. et al. Ecological niche modelling: A global assessment based on bibliometric analysis. Front. Environ. Sci. 12, 1376213 (2024).


    Google Scholar
     

  • Nashwan, M. S. & Shahid, S. A novel framework for selecting general circulation models based on the spatial patterns of climate. Int. J. Climatol. 40, 4422–4443 (2020).


    Google Scholar
     

  • Du, Y. et al. Comprehensive assessment of CMIP5 and CMIP6 models in simulating and projecting precipitation over the global land. Int. J. Climatol. 42, 6859–6875 (2022).


    Google Scholar
     

  • Gusain, A., Ghosh, S. & Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 232, 104680 (2020).


    Google Scholar
     

  • HamadAmin, B. A. & Khwarahm, N. R. Mapping impacts of climate change on the distributions of two endemic tree species under socioeconomic pathway scenarios (SSP). Sustainability (Switzerland) 15, 5469 (2023).


    Google Scholar
     

  • Kant, C. & Meena, R. S. Projection of future rainfall events over the Beas River basin, Western Himalaya, using shared socioeconomic pathways (SSPs) from CMIP6. J. Water Clim. Change 15, 3536–3548 (2024).


    Google Scholar
     

  • Shrestha, U. B. et al. Climate change-induced distributional change of medicinal and aromatic plants in the Nepal Himalaya. Ecol. Evol. 12, e9204 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rana, S. K. et al. Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal. Ecol. Indic. 115, 106435 (2020).


    Google Scholar
     

  • Rahim, A. et al. Early 21st century trends of temperature extremes over the northwest Himalayas. Atmosphere (Basel) 14, 454 (2023).


    Google Scholar
     

  • Negi, V. S., Tiwari, D. C., Singh, L., Thakur, S. & Bhatt, I. D. Review and synthesis of climate change studies in the Himalayan region. Environ. Dev. Sustain. 24, 10471–10502 (2022).


    Google Scholar
     

  • Rodgers W. A. & Panwar H. S. Planning a Wildlife Protected Area Network in India. v. 1: The Report.-v. 2: State Summaries. (1988).

  • Kumar, A., Adhikari, B. S. & Rawat, G. S. Biogeographic delineation of the Indian Trans-Himalaya: Need for revision. Curr. Sci. 113(6), 1032 (2017).


    Google Scholar
     

  • Devi, K., Samant, S. S., Puri, S. & Lal, M. Diversity, structure and regeneration pattern of tree communities in Kanawar Wildlife Sanctuary of Himachal Pradesh, north west Himalaya, India. Indian J. Ecol. 46(1), 94–103 (2019).


    Google Scholar
     

  • Barman, T., Samant, S. & Singh, A. Structural diversity and regeneration pattern of forest communities in Parbati valley, north western Himalaya, India: Implications for conservation. Ecology 48, 332–348 (2021).


    Google Scholar
     

  • Kaur, D., Tiwana, A. S., Kaur, S. & Gupta, S. Climate change: Concerns and influences on biodiversity of the Indian Himalayas. In Climate Change (eds Rani, S. & Kumar, R.) 265–281 (Springer, 2022). https://doi.org/10.1007/978-3-030-92782-0_13.


    Google Scholar
     

  • Bargali, H., Kumar, A. & Singh, P. Plant studies in Uttarakhand, Western Himalaya: A comprehensive review. Trees For. People 8, 100203 (2022).


    Google Scholar
     

  • Dhyani, S. & Dhyani, D. Significance of provisioning ecosystem services from moist temperate forest ecosystems: Lessons from upper Kedarnath valley, Garhwal, India. Energy Ecol. Environ. 1, 109–121 (2016).


    Google Scholar
     

  • Owen, L. A. Himalayan landscapes of India. In Landscapes and Landforms of India World Geomorphological Landscapes (ed. Kale, V.) 41–52 (Springer, 2014). https://doi.org/10.1007/978-94-017-8029-2_4.


    Google Scholar
     

  • Valdiya, K. S. Reactivation of terrane-defining boundary thrusts in central sector of the Himalaya: Implications. Curr. Sci. 81, 1418–1431 (2001).


    Google Scholar
     

  • Singh, S. P. et al. Western Himalyan Ecoregional Biodiversity Strategy and Action Plan Prepared under the National Biodiversity Strategy and Action Plan-India Working Group Members. www.wii.gov.in/ghnpindia.htm (2002).

  • Bookhagen, B. & Burbank, D. W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2009JF001426 (2010).


    Google Scholar
     

  • Kumar, S. Challenges and opportunities: Tribal community and handlooms in Uttarakhand, India. J. Mountain Res. 17, 51220 (2022).


    Google Scholar
     

  • Wani, Z. A. et al. Ensemble modelling reveals shrinkage of suitable habitat for Himalayan Boxwood (Buxus wallichiana Bail.) under climate change: Implications for conservation. Phytocoenologia 52, 55–69 (2024).


    Google Scholar
     

  • Anand, U. et al. Podophyllum hexandrum and its active constituents: Novel radioprotectants. Biomed. Pharmacother. https://doi.org/10.1016/j.biopha.2021.112555 (2022).

    PubMed 

    Google Scholar
     

  • Xiong, Y. Z., Fang, Q. & Huang, S. Q. Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB Plants 5, plt037 (2013).

    PubMed Central 

    Google Scholar
     

  • Kalam, M. A., Malik, A. H., Ganie, A. H. & Butt, T. A. Medicinal importance of Papra (Podophyllum hexandrum Royle) in Unani system of medicine. J. Complement. Integr. Med. 18, 485–490 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lata, H., Mizuno, C. S. & Moraes, R. M. The role of biotechnology in the production of the anticancer compound podophyllotox. Methods Mol. Biol. https://doi.org/10.1007/978-1-60327-287-2_31 (2009).

    PubMed 

    Google Scholar
     

  • Dogra, V., Ahuja, P. S. & Sreenivasulu, Y. Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. J. Proteom. 78, 26–38 (2013).

    CAS 

    Google Scholar
     

  • iucnredlist.org assessed. on 15th January, 2025. IUCN (2025).

  • Moudrý, V. et al. Optimising occurrence data in species distribution models: Sample size, positional uncertainty, and sampling bias matter. Ecography https://doi.org/10.1111/ecog.07294 (2024).


    Google Scholar
     

  • Ahmad, R., Khuroo, A. A., Hamid, M., Charles, B. & Rashid, I. Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers. Conserv. 28, 2319–2344 (2019).


    Google Scholar
     

  • Amiri, M., Tarkesh, M. & Shafiezadeh, M. Modelling the biological invasion of Prosopis juliflora using geostatistical-based bioclimatic variables under climate change in arid zones of southwestern Iran. J. Arid Land 14, 203–224 (2022).


    Google Scholar
     

  • Yoon, S. & Lee, W.-H. Methodological analysis of bioclimatic variable selection in species distribution modeling with application to agricultural pests (Metcalfa pruinosa and Spodoptera litura). Comput. Electron. Agric. 190, 106430 (2021).


    Google Scholar
     

  • Zaher, E. et al. Enhance feature selection for spatiotemporal modelling of blow flies habitat using google earth engine. Egypt. Acad. J. Biol. Sci. A Entomol. 17, 27–37 (2024).

    MathSciNet 

    Google Scholar
     

  • Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).


    Google Scholar
     

  • Fitzgibbon, A., Pisut, D. & Fleisher, D. Evaluation of maximum entropy (Maxent) machine learning model to assess relationships between climate and corn suitability. Land (Basel) 11, 1382 (2022).


    Google Scholar
     

  • Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).


    Google Scholar
     

  • Safdar, S., Younes, I., Ahmad, A. & Sastry, S. A comprehensive review of spatial distribution modeling of plant species in mountainous environments: Implications for biodiversity conservation and climate change assessment. Kuwait J. Sci. 52, 100337 (2025).


    Google Scholar
     

  • Liang, J. et al. Impacts of changing climate on the distribution of migratory birds in China: habitat change and population centroid shift. Authorea https://doi.org/10.22541/au.158398104.48947306.

  • Ahmadi, M., Hemami, M. R., Kaboli, M. & Shabani, F. MaxEnt brings comparable results when the input data are being completed: Model parameterization of four species distribution models. Ecol. Evol. 13, e9827 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, D. A., Anderson, O. F., Rowden, A. A., Stephenson, F. & Clark, M. R. Assessing habitat suitability models for the deep sea: Is our ability to predict the distributions of seafloor fauna improving?. Front. Mar. Sci. 8, 632389 (2021).


    Google Scholar
     

  • Manish, K. Medicinal plants in peril due to climate change in the Himalaya. Ecol. Inform. 68, 101546 (2022).


    Google Scholar
     

  • Chen, Y. et al. Prediction of change in suitable habitats of Senna obtusifolia and Senna tora under climate change. Sci. Rep. 14, 30904 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, A., Dogra, V., Joshi, R. & Kumar, S. Stress-responsive cis-regulatory elements underline podophyllotoxin biosynthesis and better performance of Sinopodophyllum hexandrum under water deficit conditions. Front. Plant Sci. 12, 751846 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qazi, P. H., Rashid, A. & Shawl, S. A. “Podophyllum hexandrum”: A versatile medicinal plant. Int. J. Pharm. Pharm. Sci. 3, 261–268 (2011).


    Google Scholar
     

  • Ahsan, S., Bhat, M. S., Alam, A., Farooq, H. & Shiekh, H. A. Evaluating the impact of climate change on extreme temperature and precipitation events over the Kashmir Himalaya. Clim. Dyn. 58, 1651–1669 (2022).


    Google Scholar
     

  • Qiu, L. et al. Contrasting range changes of Bergenia (Saxifragaceae) species under future climate change in the Himalaya and Hengduan mountains Region. Theor. Appl. Climatol. 155, 1927–1939 (2024).


    Google Scholar
     

  • Kharkwal, A., Singh, D., Rajkumar, S. & Ahuja, P. S. Genetic variation within and among the populations of Podophyllum hexandrum Royle (Podophyllaceae) in western Himalaya. Plant Genet. Resour. Newsl. 156, 68–72 (2008).


    Google Scholar
     

  • Jagdish, S., Joginder, S. & Tewari, V. P. Screening and evaluation of superior chemotypes of Podophyllum hexandrum Royle from different geographical locations of north-west Himalayas. J. Plant Chem. Ecophysiol. 3, 1021 (2018).


    Google Scholar
     

  • Negi, V. S., Giri, L. & Chandra Sekar, K. Floristic diversity, community composition and structure in Nanda Devi national park after prohibition of human activities, Western Himalaya, India. Curr. Sci. 115, 1056 (2018).


    Google Scholar
     

  • Islam, T., Khuroo, A. A. & Nawchoo, I. A. An annotated checklist of flora of Overa-Aru wildlife sanctuary, Kashmir Himalaya. Phytotaxa 599, 20–50 (2023).


    Google Scholar
     

  • Wani, Z. A. & Pant, S. Assessment of floristic diversity and community characteristics of Gulmarg Wildlife sanctuary, Kashmir Himalaya. Geol. Ecol. Landsc. https://doi.org/10.1080/24749508.2023.2196767 (2023).


    Google Scholar
     

  • Wani, Z. A. et al. Improving ecosystem vitality in India: Overcoming barriers to meet National and International targets. Environ. Sustain. 8, 17–29 (2025).


    Google Scholar
     

  • Kala, C. P. Indigenous uses, population density, and conservation of threatened medicinal plants in protected areas of the Indian Himalayas. Conserv. Biol. 19, 368–378 (2005).


    Google Scholar
     

  • Banerjee, A., Devi, M., Nag, A., Sharma, R. K. & Kumar, A. Modelling probable distribution of Podophyllum hexandrum in north-western Himalaya. Indian For. 143, 1255–1259 (2017).


    Google Scholar
     

  • Singh, J., Singh, J. & Lata, S. Podophyllum hexandrum. in Himalayan Medicinal Plants 85–110 (Elsevier, 2021). https://doi.org/10.1016/B978-0-12-823151-7.00001-5.

  • Chaudhari, S. K., Bibi, Y. & Arshad, M. Podophyllum Hexandrum: An endangered medicinal plant from Pakistan. Pure Appl. Bio. 3, 19–24 (2014).

    CAS 

    Google Scholar
     

  • Sharma, N., Thakur, M., Sharma, P., Sharma, Y. P. & Dutt, B. In vitro propagation from rhizomes, molecular evaluation and podophyllotoxin production in Himalayan May Apple (Sinopodophyllum hexandrum Royle T.S. Ying): An endangered medicinal plant. Plant Cell Tissue Organ. Cult. 149, 159–173 (2022).

    CAS 

    Google Scholar
     

  • Nayar, M. P. & Sastry, A. R. K. Red Data Book of Indian Plants Vol. 1 (Botanical Survey of India, 1987).


    Google Scholar
     

  • Bhardwaj, K., Sharma, P., Kumar, H. & Dhanjal, D. S. Ethnomedicinal remedy for the liver disorders in Himachal Pradesh : A review. Plant Archives 19(2), 1959–1967 (2019).


    Google Scholar
     

  • CITES. CITES Species Database. http://speciesplus.net/ (2021).

  • Bobrowski, M., Weidinger, J. & Schickhoff, U. Is new always better? Frontiers in global climate datasets for modeling Treeline species in the Himalayas. Atmosphere (Basel) 12, 543 (2021).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Spatial distribution of exotic lumbricid earthworm Octolasion tyrtaeum in endangered Taxus...

    Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A. & Brook, B. W. Unreported yet massive deforestation driving loss of endemic...
    Biodiversity
    15
    minutes

    Unlocking the African bioeconomy and strengthening biodiversity conservation through genomics and...

    Ebenezer, T. E. et al. Africa: sequence 100,000 species to safeguard biodiversity. Nature 603, 388–392 (2022).CAS  ...
    Biodiversity
    19
    minutes

    Cryptobenthic crab assemblages are more distinct across a 90 m depth gradient...

    Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013). ...
    Biodiversity
    13
    minutes

    Terrestrial land cover shapes fish diversity in a major subtropical river...

    The study was conducted in the Chao Phraya River catchment located in Northern and Central Thailand, covering rivers in both mountainous and plain...
    Biodiversity
    16
    minutes
    spot_imgspot_img