Promoting urban biodiversity for the benefit of people and nature


  • World Urbanization Prospects. The 2018 Revision Vol. 12 (United Nations Department of Economic and Social Affairs, 2019).

  • Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES https://zenodo.org/record/5657041 (2019).

  • Elmqvist, T. et al. (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (Springer, 2013).

  • McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).

    Article 

    Google Scholar
     

  • Simkin, R. D., Seto, K. C., Mcdonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 119, e2117297119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Change Biol. 26, 1196–1211 (2020).

    Article 

    Google Scholar
     

  • van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).

    Article 

    Google Scholar
     

  • Kowarik, I. Urban biodiversity, ecosystems and the city. Insights from 50 years of the Berlin School of urban ecology. Landsc. Urban. Plan. 240, 104877 (2023).

    Article 

    Google Scholar
     

  • Sukopp, H. Die Großstadt als Gegenstand ökologischer Forschung. Schr. Vereins Verbreit. Naturwissenschaft. Kenntnisse Wien. 113, 90–140 (1973).


    Google Scholar
     

  • Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).

    Article 

    Google Scholar
     

  • McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article 

    Google Scholar
     

  • Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 576 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article 

    Google Scholar
     

  • Lepczyk, C. A., Aronson, M. F. & La Sorte, F. A. Cities as sanctuaries. Front. Ecol. Environ. 21, 251–259 (2023).

    Article 

    Google Scholar
     

  • Planchuelo, G., von Der Lippe, M. & Kowarik, I. Untangling the role of urban ecosystems as habitats for endangered plant species. Landsc. Urban. Plan. 189, 320–334 (2019).

    Article 

    Google Scholar
     

  • Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    Article 

    Google Scholar
     

  • Kühn, I., Brandl, R. & Klotz, S. The flora of German cities is naturally species rich. Evol. Ecol. Res. 6, 749–764 (2004).


    Google Scholar
     

  • Spotswood, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71, 148–160 (2021).

    Article 

    Google Scholar
     

  • Hahs, A. K. et al. A global synthesis of plant extinction rates in urban areas. Ecol. Lett. 12, 1165–1173 (2009).

    Article 

    Google Scholar
     

  • Kowarik, I. & von der Lippe, M. Plant population success across urban ecosystems: a framework to inform biodiversity conservation in cities. J. Appl. Ecol. 55, 2354–2361 (2018).

    Article 

    Google Scholar
     

  • Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).

    Article 

    Google Scholar
     

  • Kleinschroth, F. et al. Global disparities in urban green space use during the COVID-19 pandemic from a systematic review. Nat. Cities 1, 136–149 (2024).

    Article 

    Google Scholar
     

  • Knapp, S. et al. A research agenda for urban biodiversity in the global extinction crisis. BioScience 71, 268–279 (2021).

    Article 

    Google Scholar
     

  • Rega-Brodsky, C. C. et al. Urban biodiversity: state of the science and future directions. Urban Ecosyst. 25, 1083–1096 (2022).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. J. Do people who experience more nature act more to protect it? A meta-analysis. Biol. Conserv. 289, 110417 (2024).

    Article 

    Google Scholar
     

  • Haaland, C. & Konijnendijk van den Bosch, C. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green 14, 760–771 (2015).

    Article 

    Google Scholar
     

  • Conference of the Parties to the Convention on Biological Diversity (COP 15). Kunming–Montreal Global Biodiversity Framework. Convention on Biological Diversity https://www.cbd.int/gbf (2022).

  • McDonnell, M. J. & Hahs, A. K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landsc. Ecol. 23, 1143–1155 (2008).

    Article 

    Google Scholar
     

  • The World’s Cities in 2016. United Nations https://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (2016).

  • Global Biodiversity Outlook 3. Convention on Biological Diversity https://www.cbd.int/sites/default/files/2020-09/GBO3-Summary-final-en-min.pdf (2010).

  • Knapp, S., Kühn, I., Schweiger, O. & Klotz, S. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecol. Lett. 11, 1054–1064 (2008).

    Article 

    Google Scholar
     

  • La Sorte, F. A. et al. The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Divers. Distrib. 24, 928–938 (2018).

    Article 

    Google Scholar
     

  • Nilon, C. H. & Aronson, M. F. J. (eds) Routledge Handbook of Urban Biodiversity (Routledge, 2023).

  • Kendal, D. et al. City-size bias in knowledge on the effects of urban nature on people and biodiversity. Environ. Res. Lett. 15, 124035 (2020).

    Article 

    Google Scholar
     

  • Shackleton, C. M. in Urban Ecology in the Global South (eds Shackleton, C. M., Cilliers, S. S., Davoren, E. & du Toit, M. J.) 203–226 (Springer International, 2021).

  • Awoyemi, A. G. & Ibáñez-Álamo, J. D. Status of urban ecology in Africa: a systematic review. Landsc. Urban. Plan. 233, 104707 (2023).

    Article 

    Google Scholar
     

  • Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Article 

    Google Scholar
     

  • Chen, C. et al. Incorporating local ecological knowledge into urban riparian restoration in a mountainous region of Southwest China. Urban For. Urban Green 20, 140–151 (2016).

    Article 

    Google Scholar
     

  • Yli-Pelkonen, V. & Kohl, J. The role of local ecological knowledge in sustainable urban planning: perspectives from Finland. Sustain. Sci. Pract. Policy 1, 3–14 (2005).


    Google Scholar
     

  • Lam, D. P. M. et al. Indigenous and local knowledge in sustainability transformations research: a literature review. Ecol. Soc. 25, 3 (2020).

    Article 

    Google Scholar
     

  • McDonnell, M. J. & Hahs, A. K. Adaptation and adaptedness of organisms to urban environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280 (2015).

    Article 

    Google Scholar
     

  • Grimm, N. B., Grove, J. G., Pickett, S. T. A. & Redman, C. L. Integrated approaches to long-term studies of urban ecological systems: urban ecological systems present multiple challenges to ecologists — pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory. BioScience 50, 571–584 (2000).

    Article 

    Google Scholar
     

  • Pickett, S. T. A. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Evol. Syst. 32, 127–157 (2001).

    Article 

    Google Scholar
     

  • Aronson, M. F. J. et al. Hierarchical filters determine community assembly of urban species pools. Ecology 97, 2952–2963 (2016).

    Article 

    Google Scholar
     

  • Fairbairn, A. J. et al. Urban biodiversity is affected by human-designed features of public squares. Nat. Cities 1, 706–715 (2024).

    Article 

    Google Scholar
     

  • Hahs, A. K. et al. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat. Commun. 14, 4751 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kendal, D., Williams, K. J. H. & Williams, N. S. G. Plant traits link people’s plant preferences to the composition of their gardens. Landsc. Urban Plan. 105, 34–42 (2012).

    Article 

    Google Scholar
     

  • Roman, L. A. et al. Human and biophysical legacies shape contemporary urban forests: a literature synthesis. Urban For. Urban Green 31, 157–168 (2018).

    Article 

    Google Scholar
     

  • Bullock, J. M. et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol. Evol. 33, 958–970 (2018).

    Article 

    Google Scholar
     

  • Alberti, M. & Wang, T. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecol. Lett. 25, 1027–1045 (2022).

    Article 

    Google Scholar
     

  • Cadenasso, M. L., Pickett, S. T. A. & Grove, J. M. Dimensions of ecosystem complexity: heterogeneity, connectivity, and history. Ecol. Complex. 3, 1–12 (2006).

    Article 

    Google Scholar
     

  • McPhearson, T. et al. A social–ecological–technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).

    Article 

    Google Scholar
     

  • Frantzeskaki, N. et al. A transformative shift in urban ecology toward a more active and relevant future for the field and for cities. Ambio 53, 871–889 (2024).

    Article 

    Google Scholar
     

  • McPhearson, T. et al. Advancing urban ecology toward a science of cities. BioScience 66, 198–212 (2016).

    Article 

    Google Scholar
     

  • Müller, N. & Werner, P. A review on the work of German urban biodiversity networks — from national to international activities. Urban Ecosyst. 27, 2021–2036 (2024).

    Article 

    Google Scholar
     

  • Toledo-Garibaldi, M., Puric-Mladenovic, D. & Smith, S. M. Urban biotope classification incorporates urban forest and green infrastructure for improved environmental land-use planning in Mexico City. Urban Ecosyst. 26, 323–336 (2023).

    Article 

    Google Scholar
     

  • Hassan, R. et al. Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group. Millennium Ecosystem Assessment Series (Island Press, 2005).

  • Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M. & Morgan, E. A. Coping with the impacts of urban heat islands. A literature-based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 171, 1140–1149 (2018).

    Article 

    Google Scholar
     

  • Besser, L. M. & Lovasi, G. S. in Nature-Based Solutions for Cities (eds McPhearson, T. et al.) 167–191 (Edward Elgar Publishing, 2023).

  • Kabisch, N., Basu, S., van den Bosch, M., Bratman, G. N. & Masztalerz, O. in Nature-Based Solutions for Cities (eds McPhearson, T. et al.) 192–212 (Edward Elgar Publishing, 2023).

  • Yang, B. Y. et al. Greenspace and human health: an umbrella review. Innovation 2, 100164 (2021).


    Google Scholar
     

  • Haase, D. & Gaeva, D. Allotments for all? Social–environmental values of urban gardens for gardeners and the public in cities: the example of Berlin, Germany. People Nat. 5, 1207–1219 (2023).

    Article 

    Google Scholar
     

  • Lyytimäki, J. & Sipilä, M. Hopping on one leg—the challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 8, 309–315 (2009).

    Article 

    Google Scholar
     

  • von Döhren, P. & Haase, D. Geospatial assessment of urban ecosystem disservices: an example of poisonous urban trees in Berlin, Germany. Urban For. Urban Green 67, 127440 (2022).

    Article 

    Google Scholar
     

  • Hegetschweiler, K. T. et al. Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: a review of European studies. Urban For. Urban Green 21, 48–59 (2017).

    Article 

    Google Scholar
     

  • De Lacy, P. & Shackleton, C. Aesthetic and spiritual ecosystem services provided by urban sacred sites. Sustainability 9, 1628 (2017).

    Article 

    Google Scholar
     

  • Gopal, D., von der Lippe, M. & Kowarik, I. Sacred sites as habitats of culturally important plant species in an Indian megacity. Urban For. Urban Green 32, 113–122 (2018).

    Article 

    Google Scholar
     

  • Schwarz, N. et al. Understanding biodiversity–ecosystem service relationships in urban areas: a comprehensive literature review. Ecosyst. Serv. 27, 161–171 (2017).

    Article 

    Google Scholar
     

  • Lundholm, J. T. Green roof plant species diversity improves ecosystem multifunctionality. J. Appl. Ecol. 52, 726–734 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).

    Article 

    Google Scholar
     

  • Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 110, 916–934 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Potgieter, L. J. et al. Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol. Invas. 19, 3571–3588 (2017).

    Article 

    Google Scholar
     

  • Schlaepfer, M. A., Guinaudeau, B. P., Martin, P. & Wyler, N. Quantifying the contributions of native and non-native trees to a city’s biodiversity and ecosystem services. Urban For. Urban Green 56, 126861 (2020).

    Article 

    Google Scholar
     

  • Guillen-Cruz, G., Rodríguez-Sánchez, A. L., Fernández-Luqueño, F. & Flores-Rentería, D. Influence of vegetation type on the ecosystem services provided by urban green areas in an arid zone of northern Mexico. Urban For. Urban Green 62, 127135 (2021).

    Article 

    Google Scholar
     

  • Botzat, A., Fischer, L. K. & Kowarik, I. Unexploited opportunities in understanding liveable and biodiverse cities. A review on urban biodiversity perception and valuation. Glob. Environ. Change 39, 220–233 (2016).

    Article 

    Google Scholar
     

  • Fischer, L. K. et al. Beyond green: broad support for biodiversity in multicultural European cities. Glob. Environ. Change 49, 35–45 (2018).

    Article 

    Google Scholar
     

  • Dallimer, M. et al. Biodiversity and the feel-good factor: understanding associations between self-reported human well-being and species richness. BioScience 62, 47–55 (2012).

    Article 

    Google Scholar
     

  • Methorst, J. et al. The importance of species diversity for human well-being in Europe. Ecol. Econ. 181, 106917 (2021).

    Article 

    Google Scholar
     

  • Nawrath, M., Elsey, H., Rijal, M. L. & Dallimer, M. Greenspaces and human well-being: perspectives from a rapidly urbanising low-income country. Environments 9, 148 (2022).

    Article 

    Google Scholar
     

  • Beninde, J., Veith, M. & Hochkirch, A. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 18, 581–592 (2015).

    Article 

    Google Scholar
     

  • Chisholm, R. A. et al. Two centuries of biodiversity discovery and loss in Singapore. Proc. Natl. Acad. Sci. USA 120, e2309034120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pauchard, A., Aguayo, M., Peña, E. & Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: the case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 127, 272–281 (2006).

    Article 

    Google Scholar
     

  • Adegun, O. B., Ikudayisi, A. E., Morakinyo, T. E. & Olusoga, O. O. Urban green infrastructure in Nigeria: a review. Sci. Afr. 14, e01044 (2021).


    Google Scholar
     

  • Anujan, K. et al. Beyond the metropolis: street tree communities and resident perceptions on ecosystem services in small urban centers in India. J. Urban. Ecol. 10, juae004 (2024).

    Article 

    Google Scholar
     

  • Guilherme, F., Vicente, J. R., Carretero, M. A. & Farinha-Marques, P. Mapping multigroup responses to land cover legacy for urban biodiversity conservation. Biol. Conserv. 291, 110508 (2024).

    Article 

    Google Scholar
     

  • Li, M., Verburg, P. H. & van Vliet, J. Global trends and local variations in land take per person. Landsc. Urban Plan. 218, 104308 (2022).

    Article 

    Google Scholar
     

  • Soga, M., Yamaura, Y., Koike, S. & Gaston, K. J. Land sharing vs. land sparing: does the compact city reconcile urban development and biodiversity conservation? J. Appl. Ecol. 51, 1378–1386 (2014).

    Article 

    Google Scholar
     

  • Zoomers, A., van Noorloos, F., Otsuki, K., Steel, G. & van Westen, G. The rush for land in an urbanizing world: from land grabbing toward developing safe, resilient, and sustainable cities and landscapes. World Dev. 92, 242–252 (2017).

    Article 

    Google Scholar
     

  • Qian, Y., Zhou, W., Yu, W. & Pickett, S. T. A. Quantifying spatiotemporal pattern of urban greenspace: new insights from high resolution data. Landsc. Ecol. 30, 1165–1173 (2015).

    Article 

    Google Scholar
     

  • Angold, P. G. et al. Biodiversity in urban habitat patches. Sci. Total. Environ. 360, 196–204 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L., Zhao, S. & Liu, S. A global analysis of urbanization effects on amphibian richness: patterns and drivers. Glob. Environ. Change 73, 102476 (2022).

    Article 

    Google Scholar
     

  • Ramalho, C. E., Laliberté, E., Poot, P. & Hobbs, R. J. Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. Ecology 95, 2466–2478 (2014).

    Article 

    Google Scholar
     

  • Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buchholz, S., Gathof, A. K., Grossmann, A. J., Kowarik, I. & Fischer, L. K. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan. 196, 103731 (2020).

    Article 

    Google Scholar
     

  • Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Knapp, S., Kühn, I., Stolle, J. & Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Persp. Plant Ecol. Evol. Syst. 12, 235–244 (2010).

    Article 

    Google Scholar
     

  • Planchuelo, G., Kowarik, I. & von der Lippe, M. Plant traits, biotopes and urbanization dynamics explain the survival of endangered urban plant populations. J. Appl. Ecol. 57, 1581–1592 (2020).

    Article 

    Google Scholar
     

  • Ancillotto, L. et al. No city for wetland species: habitat associations affect mammal persistence in urban areas. Proc. R. Soc. B 291, 20240079 (2024).

    Article 

    Google Scholar
     

  • Teurlincx, S. et al. Towards restoring urban waters: understanding the main pressures. Curr. Opin. Environ. Sustain. 36, 49–58 (2019).

    Article 

    Google Scholar
     

  • Kalcounis-Rueppell, M. C., Payne, V. H., Huff, S. R. & Boyko, A. L. Effects of wastewater treatment plant effluent on bat foraging ecology in an urban stream system. Biol. Conserv. 138, 120–130 (2007).

    Article 

    Google Scholar
     

  • Kleinschroth, F. et al. Living with floating vegetation invasions. Ambio 50, 125–137 (2020).

    Article 

    Google Scholar
     

  • Sarah, P. & Zhevelev, H. M. Effect of visitors’ pressure on soil and vegetation in several different micro-environments in urban parks in Tel Aviv. Landsc. Urban Plan. 83, 284–293 (2007).

    Article 

    Google Scholar
     

  • Hu, X. & Lima, M. F. The association between maintenance and biodiversity in urban green spaces: a review. Landsc. Urban Plan. 251, 105153 (2024).

    Article 

    Google Scholar
     

  • Aguilera, G., Ekroos, J., Persson, A. S., Pettersson, L. B. & Öckinger, E. Intensive management reduces butterfly diversity over time in urban green spaces. Urban Ecosyst. 22, 335–344 (2019).

    Article 

    Google Scholar
     

  • Varga-Szilay, Z., Fetykó, K. G., Szövényi, G. & Pozsgai, G. Bridging biodiversity and gardening: unravelling the interplay of socio-demographic factors, garden practices, and garden characteristics. Urban For. Urban Green 97, 128367 (2024).

    Article 

    Google Scholar
     

  • Francis, C. D., Ortega, C. P. & Cruz, A. Noise pollution changes avian communities and species interactions. Curr. Biol. 19, 1415–1419 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sordello, R. et al. A plea for a worldwide development of dark infrastructure for biodiversity — practical examples and ways to go forward. Landsc. Urban Plan. 219, 104332 (2022).

    Article 

    Google Scholar
     

  • Kornreich, A., Partridge, D., Youngblood, M. & Parkins, K. Rehabilitation outcomes of bird–building collision victims in the northeastern United States. PLoS ONE 19, e0306362 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Solecki, W. & Marcotullio, P. J. in Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (eds Elmqvist, T. et al.) 485–504 (Springer, 2013).

  • Wilby, R. L. & Perry, G. L. W. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog. Phys. Geogr. Earth Environ. 30, 73–98 (2006).

    Article 

    Google Scholar
     

  • Haight, J. D. et al. Urbanization, climate and species traits shape mammal communities from local to continental scales. Nat. Ecol. Evol. 7, 1654–1666 (2023).

    Article 

    Google Scholar
     

  • Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Change 12, 950–955 (2022).

    Article 

    Google Scholar
     

  • Haase, D. & Hellwig, R. Effects of heat and drought stress on the health status of six urban street tree species in Leipzig, Germany. Trees For. People 8, 100252 (2022).

    Article 

    Google Scholar
     

  • Raum, S. et al. Tree insect pests and pathogens: a global systematic review of their impacts in urban areas. Urban Ecosyst. 26, 587–604 (2023).

    Article 

    Google Scholar
     

  • Gaertner, M. et al. Non-native species in urban environments: patterns, processes, impacts and challenges. Biol. Invas. 19, 3461–3469 (2017).

    Article 

    Google Scholar
     

  • Gaertner, M. & Kowarik, I. in Routledge Handbook of Urban Biodiversity (eds Nilon, C. H. & Aronson, M. F. J.) 172–190 (Routledge, 2023).

  • Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Conserv. 157, 341–351 (2013).

    Article 

    Google Scholar
     

  • Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: a blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).

    Article 

    Google Scholar
     

  • Kumar Rai, P. & Singh, J. S. Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol. Indic. 111, 106020 (2020).

    Article 

    Google Scholar
     

  • Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian Chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kabisch, N. & Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 122, 129–139 (2014).

    Article 

    Google Scholar
     

  • Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).

    Article 

    Google Scholar
     

  • Calderón-Argelich, A. et al. Tracing and building up environmental justice considerations in the urban ecosystem service literature: a systematic review. Landsc. Urban Plan. 214, 104130 (2021).

    Article 

    Google Scholar
     

  • Rigolon, A., Browning, M., Lee, K. & Shin, S. Access to urban green space in cities of the Global South: a systematic literature review. Urban Sci. 2, 67 (2018).

    Article 

    Google Scholar
     

  • Muratet, A., Pellegrini, P., Dufour, A.-B., Arrif, T. & Chiron, F. Perception and knowledge of plant diversity among urban park users. Landsc. Urban Plan. 137, 95–106 (2015).

    Article 

    Google Scholar
     

  • Soulsbury, C. D. & White, P. C. L. in Human–Wildlife Interactions: Turning Conflict into Coexistence (eds Frank, B., Glikman, J. A. & Marchini, S.) 107–128 (Cambridge Univ. Press, 2019).

  • Lin, B. B., Fuller, R. A., Bush, R., Gaston, K. J. & Shanahan, D. F. Opportunity or orientation? Who uses urban parks and why. PLoS ONE 9, e87422 (2014).

    Article 

    Google Scholar
     

  • Soga, M. & Gaston, K. The ecology of human–nature interactions. Proc. R. Soc. B 287, 20191882 (2020).

    Article 

    Google Scholar
     

  • Clayton, S. et al. Transformation of experience: toward a new relationship with nature. Conserv. Lett. 10, 645–651 (2017).

    Article 

    Google Scholar
     

  • Langhans, K. E. et al. Centring justice in conceptualizing and improving access to urban nature. People Nat. 5, 897–910 (2023).

    Article 

    Google Scholar
     

  • Waite, S., Husain, F., Scandone, B., Forsyth, E. & Piggott, H. ‘It’s not for people like (them)’: structural and cultural barriers to children and young people engaging with nature outside schooling. J. Adventure Educ. Outdoor Learn. 23, 54–73 (2023).

    Article 

    Google Scholar
     

  • Yue, Z. & Chen, J. Direct, indirect, and vicarious nature experiences collectively predict preadolescents’ self-reported nature connectedness and conservation behaviors. PeerJ 11, e15542 (2023).

    Article 

    Google Scholar
     

  • Bashan, D., Colléony, A. & Shwartz, A. Urban versus rural? The effects of residential status on species identification skills and connection to nature. People Nat. 3, 347–358 (2021).

    Article 

    Google Scholar
     

  • Whitburn, J., Linklater, W. & Abrahamse, W. Meta-analysis of human connection to nature and proenvironmental behavior. Conserv. Biol. 34, 180–193 (2020).

    Article 

    Google Scholar
     

  • Balding, M. & William, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).

    Article 

    Google Scholar
     

  • Hoyle, H., Jorgensen, A. & Hitchmough, J. D. What determines how we see nature? Perceptions of naturalness in designed urban green spaces. People Nat. 1, 167–180 (2019).

    Article 

    Google Scholar
     

  • Paul, S. & Nagendra, H. Factors influencing perceptions and use of urban nature: surveys of park visitors in Delhi. Land 6, 27 (2017).

    Article 

    Google Scholar
     

  • Otto, S. & Pensini, P. Nature-based environmental education of children: environmental knowledge and connectedness to nature, together, are related to ecological behaviour. Glob. Environ. Change 47, 88–94 (2017).

    Article 

    Google Scholar
     

  • Straka, T. M., Glahe, C., Dietrich, U., Bui, M. & Kowarik, I. From nature experience to pro-conservation action: how generational amnesia and declining nature-relatedness shape behaviour intentions of adolescents and adults. Ambio https://doi.org/10.1007/s13280-025-02135-7 (2025).

  • Löbl, I., Klausnitzer, B., Hartmann, M. & Krell, F.-T. The silent extinction of species and taxonomists — an appeal to science policymakers and legislators. Diversity 15, 1053 (2023).

    Article 

    Google Scholar
     

  • Ardoin, N. M., Bowers, A. W. & Gaillard, E. Environmental education outcomes for conservation: a systematic review. Biol. Conserv. 241, 108224 (2020).

    Article 

    Google Scholar
     

  • Bobo-Pinilla, J., Marcos-Walias, J., Delgado Iglesias, J. & Reinoso Tapia, R. Overcoming plant blindness: are the future teachers ready? J. Biol. Educ. 58, 1466–1480 (2023).

    Article 

    Google Scholar
     

  • Stroud, S. et al. The botanical education extinction and the fall of plant awareness. Ecol. Evol. 12, e9019 (2022).

    Article 

    Google Scholar
     

  • Soga, M., Gaston, K. J., Fukano, Y. & Evans, M. J. The vicious cycle of biophobia. Trends Ecol. Evol. 38, 512–520 (2023).

    Article 

    Google Scholar
     

  • Soga, M. et al. How can we mitigate against increasing biophobia among children during the extinction of experience? Biol. Conserv. 242, 108420 (2020).

    Article 

    Google Scholar
     

  • König, H. J. et al. Human–wildlife coexistence in a changing world. Conserv. Biol. 34, 786–794 (2020).

    Article 

    Google Scholar
     

  • Buijs, A. & Jacobs, M. Avoiding negativity bias: towards a positive psychology of human–wildlife relationships. Ambio 50, 281–288 (2021).

    Article 

    Google Scholar
     

  • Fisher, J. C. et al. Perceived biodiversity, sound, naturalness and safety enhance the restorative quality and wellbeing benefits of green and blue space in a neotropical city. Sci. Total Environ. 755, 143095 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ratcliffe, E., Gatersleben, B. & Sowden, P. T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 36, 221–228 (2013).

    Article 

    Google Scholar
     

  • Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. BioScience 67, 332–342 (2017).

    Article 

    Google Scholar
     

  • Transforming our world: the 2030 agenda for sustainable development. United Nations https://sdgs.un.org/2030agenda (2015).

  • Girma, Y., Terefe, H., Pauleit, S. & Kindu, M. Urban green infrastructure planning in Ethiopia: the case of emerging towns of Oromia special zone surrounding Finfinne. J. Urban Manag. 8, 75–88 (2019).

    Article 

    Google Scholar
     

  • Pauleit, S., Vasquéz, A., Maruthaveeran, S., Liu, L. & Cilliers, S. S. in Urban Ecology in the Global South (eds Shackleton, C. M., Cilliers, S. S., Davoren, E. & du Toit, M. J.) 107–143 (Springer International, 2021).

  • Fors, H., Hagemann, F. A., Sang, A. O. & Randrup, T. B. Striving for inclusion—a systematic review of long-term participation in strategic management of urban green spaces. Front. Sustain. Cities 3, 572423 (2021).

  • Varshney, K. et al. Biodiverse residential development: a review of New Zealand policies and strategies for urban biodiversity. Urban For. Urban Green 94, 128276 (2024).

    Article 

    Google Scholar
     

  • Raymond, C. M. et al. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 77, 15–24 (2017).

    Article 

    Google Scholar
     

  • Dillen, S. M. E., van Vries, S., de Groenewegen, P. P. & Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: adding quality to quantity. J. Epidemiol. Community Health 66, e8–e8 (2012).

    Article 

    Google Scholar
     

  • Konijnendijk, C. C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: introducing the 3–30–300 rule. J. For. Res. 34, 821–830 (2023).

    Article 

    Google Scholar
     

  • Konijnendijk, C. C. Rethinking Urban Green Spaces (Edward Elgar Publishing, 2024).

  • Elmqvist, T. et al. Urbanization in and for the Anthropocene. Npj Urban Sustain. 1, 1–6 (2021).

    Article 

    Google Scholar
     

  • Kowarik, I., Bartz, R., Brenck, M. & Hansjürgens, B. Ecosystem Services in the City: Protecting Health and Enhancing Quality of Life: Summary for Decision-Makers (Naturkapital Deutschland, 2017).

  • Nuissl, H., Haase, D., Lanzendorf, M. & Wittmer, H. Environmental impact assessment of urban land use transitions — a context-sensitive approach. Land Use Policy 26, 414–424 (2009).

    Article 

    Google Scholar
     

  • Frantzeskaki, N. & Kabisch, N. Designing a knowledge co-production operating space for urban environmental governance — lessons from Rotterdam, Netherlands and Berlin, Germany. Environ. Sci. Policy 62, 90–98 (2016).

    Article 

    Google Scholar
     

  • Pauleit, S., Hansen, R., Rall, E. L. & Rolf, W. in The Routledge Handbook of Urban Ecology (eds Nilon, C. H. & Aronson, M. F. J.) 931–942 (Routledge, 2020).

  • Rouse, D. C. & Bunster-Ossa, I. in Planning for Climate Change (eds Hamin Infield, E. M. et al.) 273–281 (Routledge, 2018).

  • Davies, C. et al. Green Infrastructure Planning and Implementation: the Status of European Green Space Planning and Implementation Based on an Analysis of Selected European City-regions (Green Surge, 2015).

  • Pauleit, S., Hansen, R., van Lierop, M., Rall, E. L. & Rolf, W. In Handbuch Landschaft (eds Kühne, O., Weber, F., Berr, K. & Jenal, C.) 781–794 (Springer Fachmedien, 2019).

  • Siehr, S. A., Sun, M. & Aranda Nucamendi, J. L. Blue–green infrastructure for climate resilience and urban multifunctionality in Chinese cities. WIREs Energy Environ. 11, e447 (2022).

    Article 

    Google Scholar
     

  • Lindley, S., Pauleit, S., Yeshitela, K., Cilliers, S. & Shackleton, C. Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landsc. Urban Plan. 180, 328–338 (2018).

    Article 

    Google Scholar
     

  • Davies, K. K., Fisher, K. T., Dickson, M. E., Thrush, S. F. & Le Heron, R. Improving ecosystem service frameworks to address wicked problems. Ecol. Soc. 20, 37 (2015).

    Article 

    Google Scholar
     

  • Zhou, L., Gong, Y., López-Carr, D. & Huang, C. A critical role of the capital green belt in constraining urban sprawl and its fragmentation measurement. Land Use Policy 141, 107148 (2024).

    Article 

    Google Scholar
     

  • Schwarze-Rodrian, M. in Nature-Based Solutions for More Sustainable Cities — A Framework Approach for Planning and Evaluation (eds Croci, E. & Lucchitta, B.) 291–300 (Emerald Publishing, 2021).

  • Kowarik, I. The “Green Belt Berlin”: establishing a greenway where the Berlin Wall once stood by integrating ecological, social and cultural approaches. Landsc. Urban Plan. 184, 12–22 (2019).

    Article 

    Google Scholar
     

  • Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).

    Article 

    Google Scholar
     

  • Huang, C. et al. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 16, 064072 (2021).

    Article 

    Google Scholar
     

  • Donati, G. F. A., Bolliger, J., Psomas, A., Maurer, M. & Bach, P. M. Reconciling cities with nature: identifying local blue–green infrastructure interventions for regional biodiversity enhancement. J. Environ. Manage. 316, 115254 (2022).

    Article 

    Google Scholar
     

  • Guimarães, L. F. et al. The challenges of urban river restoration and the proposition of a framework towards river restoration goals. J. Clean. Prod. 316, 128330 (2021).

    Article 

    Google Scholar
     

  • Chen, B., Nie, Z., Chen, Z. & Xu, B. Quantitative estimation of 21st-century urban greenspace changes in Chinese populous cities. Sci. Total. Environ. 609, 956–965 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gerner, N. V. et al. Large-scale river restoration pays off: a case study of ecosystem service valuation for the Emscher restoration generation project. Ecosyst. Serv. 30, 327–338 (2018).

    Article 

    Google Scholar
     

  • Veról, A. P. et al. River restoration integrated with sustainable urban water management for resilient cities. Sustainability 12, 4677 (2020).

    Article 

    Google Scholar
     

  • Egerer, M. & Cohen, H. Urban Agroecology: Interdisciplinary Research and Future Directions (CRC Press, 2020).

  • Royer, H., Yengue, J. L. & Bech, N. Urban agriculture and its biodiversity: what is it and what lives in it? Agric. Ecosyst. Environ. 346, 108342 (2023).

    Article 

    Google Scholar
     

  • Itescu, Y. & Jeschke, J. M. Assessing the conservation value of cemeteries to urban biota worldwide. Conserv. Biol. 38, e14322 (2024).

    Article 

    Google Scholar
     

  • Säumel, I., Butenschön, S. & Kreibig, N. Gardens of life: multifunctional and ecosystem services of urban cemeteries in Central Europe and beyond—historical, structural, planning, nature and heritage conservation aspects. Front. Environ. Sci. 10, 1077565 (2023).

  • Zannini, P. et al. Sacred natural sites and biodiversity conservation: a systematic review. Biodivers. Conserv. 30, 3747–3762 (2021).

    Article 

    Google Scholar
     

  • Delahay, R. J., Sherman, D., Soyalan, B. & Gaston, K. J. Biodiversity in residential gardens: a review of the evidence base. Biodivers. Conserv. 32, 4155–4179 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bonthoux, S., Brun, M., Di Pietro, F., Greulich, S. & Bouché-Pillon, S. How can wastelands promote biodiversity in cities? A review. Landsc. Urban Plan. 132, 79–88 (2014).

    Article 

    Google Scholar
     

  • Luo, S. & Patuano, A. Multiple ecosystem services of informal green spaces: a literature review. Urban For. Urban Green 81, 127849 (2023).

    Article 

    Google Scholar
     

  • Vega, K. A. & Küffer, C. Promoting wildflower biodiversity in dense and green cities: the important role of small vegetation patches. Urban For. Urban Green 62, 127165 (2021).

    Article 

    Google Scholar
     

  • Orsini, F., Kahane, R., Nono-Womdim, R. & Gianquinto, G. Urban agriculture in the developing world: a review. Agron. Sustain. Dev. 33, 695–720 (2013).

    Article 

    Google Scholar
     

  • Bieri, D., Joshi, N., Wende, W. & Kleinschroth, F. Increasing demand for community gardening before, during and after the COVID-19 pandemic. Urban For. Urban Green 92, 128206 (2024).

    Article 

    Google Scholar
     

  • Obi, N. I., Nwalusi, D. M., Ibem, E. O. & Okeke, O. F. Assessment of the role of greenbelts in environmental and socio-economic development of urban areas in Southeast Nigeria. Civ. Eng. Arch. 9, 545–557 (2021).


    Google Scholar
     

  • Rolf, W., Pauleit, S. & Wiggering, H. A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban For. Urban Green 40, 73–83 (2019).

    Article 

    Google Scholar
     

  • Russo, A., Escobedo, F. J., Cirella, G. T. & Zerbe, S. Edible green infrastructure: an approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 242, 53–66 (2017).

    Article 

    Google Scholar
     

  • Sartison, K. & Artmann, M. Edible cities—an innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban For. Urban Green 49, 126604 (2020).

    Article 

    Google Scholar
     

  • Säumel, I., Reddy, S. E. & Wachtel, T. Edible city solutions — one step further to foster social resilience through enhanced socio-cultural ecosystem services in cities. Sustainability 11, 972 (2019).

    Article 

    Google Scholar
     

  • Rupprecht, C. D. D. & Byrne, J. A. Informal urban greenspace: a typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green 13, 597–611 (2014).

    Article 

    Google Scholar
     

  • Palta, M. M., Grimm, N. B. & Groffman, P. M. “Accidental” urban wetlands: ecosystem functions in unexpected places. Front. Ecol. Environ. 15, 248–256 (2017).

    Article 

    Google Scholar
     

  • Kowarik, I. Urban wilderness: supply, demand, and access. Urban For. Urban Green 29, 336–347 (2018).

    Article 

    Google Scholar
     

  • Wolff, M., Haase, D., Priess, J. & Hoffmann, T. L. The role of brownfields and their revitalisation for the functional connectivity of the urban tree system in a regrowing city. Land 12, 333 (2023).

    Article 

    Google Scholar
     

  • Sikorska, D., Łaszkiewicz, E., Krauze, K. & Sikorski, P. The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environ. Sci. Policy 108, 144–154 (2020).

    Article 

    Google Scholar
     

  • Pedrosa, E. L. J. et al. Planning for informal urban green spaces in African cities: children’s perception and use in peri-urban areas of Luanda, Angola. Urban Sci. 5, 50 (2021).

    Article 

    Google Scholar
     

  • Ferrini, F. et al. (eds) Routledge Handbook of Urban Forestry (Routledge, 2019).

  • Pataki, D. E. et al. The benefits and limits of urban tree planting for environmental and human health. Front. Ecol. Evol. 9, 603757 (2021).

    Article 

    Google Scholar
     

  • Sousa-Silva, R., Duflos, M., Ordóñez, Barona, C. & Paquette, A. Keys to better planning and integrating urban tree planting initiatives. Landsc. Urban Plan. 231, 104649 (2023).

    Article 

    Google Scholar
     

  • Bauer, M. et al. BlueGreenStreets Toolbox — A & B. Multifunktionale Straßenraumgestaltung urbaner Quartiere. Multifunctional streetscape design in urban neighborhoods. HafenCity Universität Hamburg https://doi.org/10.34712/142.27 (2022).

  • Love, N. L. R. et al. Diversity and structure in California’s urban forest: what over six million data points tell us about one of the world’s largest urban forests. Urban For. Urban Green 74, 127679 (2022).

    Article 

    Google Scholar
     

  • Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green 62, 127157 (2021).

    Article 

    Google Scholar
     

  • Berthon, K., Thomas, F. & Bekessy, S. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc. Urban Plan. 205, 103959 (2021).

    Article 

    Google Scholar
     

  • Sjöman, H., Morgenroth, J., Sjöman, J. D., Sæbø, A. & Kowarik, I. Diversification of the urban forest — can we afford to exclude exotic tree species? Urban For. Urban Green. 18, 237–241 (2016).

    Article 

    Google Scholar
     

  • Vogt, J. et al. Citree: a database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 157, 14–25 (2017).

    Article 

    Google Scholar
     

  • Böll, D. S. Trockenstressreaktionen heimischer und nicht-heimischer Stadtbaumarten in Extremsommern. LWG https://www.lwg.bayern.de/mam/cms06/landespflege/dateien/lwg_anpassungsstrategien_stadtgruen21_bf.pdf (2021).

  • Salmond, J. A. et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 15, S36 (2016).

    Article 

    Google Scholar
     

  • Guarino, R., Catalano, C. & Pasta, S. Beyond urban forests: the multiple functions and the overlooked role of semi-natural ecosystems in Mediterranean cities. Diversity 16, 447 (2024).

    Article 

    Google Scholar
     

  • Roman, L. A. et al. Beyond ‘trees are good’: disservices, management costs, and tradeoffs in urban forestry. Ambio 50, 615–630 (2021).

    Article 

    Google Scholar
     

  • Kowarik, I. & Körner, S. (eds) Wild Urban Woodlands (Springer, 2005).

  • Kowarik, I. et al. Emerging urban forests: opportunities for promoting the wild side of the urban green infrastructure. Sustainability 11, 10–12 (2019).

    Article 

    Google Scholar
     

  • Riley, C. B., Herms, D. A. & Gardiner, M. M. Exotic trees contribute to urban forest diversity and ecosystem services in inner-city Cleveland, OH. Urban For. Urban Green 29, 367–376 (2018).

    Article 

    Google Scholar
     

  • Trentanovi, G. et al. Integrating spontaneous urban woodlands into the green infrastructure: unexploited opportunities for urban regeneration. Land Use Policy 102, 105221 (2021).

    Article 

    Google Scholar
     

  • Blaustein, R. Urban biodiversity gains new converts: cities around the world are conserving species and restoring habitat. BioScience 63, 72–77 (2013).

    Article 

    Google Scholar
     

  • Deparis, M., Legay, N., Isselin-Nondedeu, F. & Bonthoux, S. How managers and city dwellers relate to spontaneous vegetation in cities: towards an integrative approach. Urban For. Urban Green 82, 127876 (2023).

    Article 

    Google Scholar
     

  • Tan, H.-A. et al. Designing and managing biodiverse streetscapes: key lessons from the city of Melbourne. Urban Ecosyst. 25, 733–740 (2022).

    Article 

    Google Scholar
     

  • Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 30, e02149 (2020).

    Article 

    Google Scholar
     

  • Phillips, B. B., Bullock, J. M., Osborne, J. L. & Gaston, K. J. Ecosystem service provision by road verges. J. Appl. Ecol. 57, 488–501 (2020).

    Article 

    Google Scholar
     

  • Säumel, I., Weber, F. & Kowarik, I. Toward livable and healthy urban streets: roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 62, 24–33 (2016).

    Article 

    Google Scholar
     

  • Fischer, L. K. & Gopal, D. Streetscapes as surrogate greenspaces during COVID-19? Front. Sustain. Cities 3, 710920 (2021).

    Article 

    Google Scholar
     

  • Pellegrini, P. & Baudry, S. Streets as new places to bring together both humans and plants: examples from Paris and Montpellier (France). Soc. Cult. Geogr. 15, 871–900 (2014).

    Article 

    Google Scholar
     

  • Navarrete-Hernandez, P., Kiarostami, N., Yang, D. & Ozcakir, A. Green enough? A dose–response curve of the impact of street greenery levels and types on perceived happiness. Landsc. Urban Plan. 251, 105130 (2024).

    Article 

    Google Scholar
     

  • Nawrath, M., Kowarik, I. & Fischer, L. K. The influence of green streets on cycling behavior in European cities. Landsc. Urban Plan. 190, 103598 (2019).

    Article 

    Google Scholar
     

  • Wong, T. H. F., Rogers, B. C. & Brown, R. R. Transforming cities through water-sensitive principles and practices. One Earth 3, 436–447 (2020).

    Article 

    Google Scholar
     

  • Chan, F. K. S. et al. “Sponge City” in China — a breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778 (2018).

    Article 

    Google Scholar
     

  • Filazzola, A., Shrestha, N. & MacIvor, J. S. The contribution of constructed green infrastructure to urban biodiversity: a synthesis and meta‐analysis. J. Appl. Ecol. 56, 2131–2143 (2019).

    Article 

    Google Scholar
     

  • Scott MacIvor, J., Williams, N. S. G. & Lundholm, J. in Routledge Handbook of Urban Biodiversity (eds Nilon, C. H. & Aronson, M. F. J.) 333–345 (Routledge, 2023).

  • Wang, L. et al. The relationship between green roofs and urban biodiversity: a systematic review. Biodivers. Conserv. 31, 1771–1796 (2022).

    Article 

    Google Scholar
     

  • Stefanakis, A. I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 11, 6981 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Song, S., Albert, C. & Prominski, M. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 53, 126712 (2020).

    Article 

    Google Scholar
     

  • Kim, K.-G., Lee, H. & Lee, D.-H. Wetland restoration to enhance biodiversity in urban areas: a comparative analysis. Landsc. Ecol. Eng. 7, 27–32 (2011).

    Article 

    Google Scholar
     

  • Wild, T. C., Bernet, J. F., Westling, E. L. & Lerner, D. N. Deculverting: reviewing the evidence on the ‘daylighting’ and restoration of culverted rivers. Water Environ. J. 25, 412–421 (2011).

    Article 

    Google Scholar
     

  • Ciach, M., Wrazidło, D. & Fedyń, I. Ecosystem engineers enter the city: habitat characteristics influencing the distribution of Eurasian beavers Castor fiber in a human-transformed landscape. Landsc. Urban Plan. 240, 104893 (2023).

    Article 

    Google Scholar
     

  • Aronson, J., Blignaut, J. N. & Aronson, T. B. Conceptual frameworks and references for landscape-scale restoration: reflecting back and looking forward. Ann. Missouri Bot. Gard. 102, 188–200 (2017).

    Article 

    Google Scholar
     

  • Fekete, R., Valkó, O., Fischer, L. K., Deák, B. & Klaus, V. H. Ecological restoration and biodiversity-friendly management of urban grasslands — a global review on the current state of knowledge. J. Environ. Manag. 368, 122220 (2024).

    Article 

    Google Scholar
     

  • Fernández-Juricic, E. & Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodivers. Conserv. 10, 2023–2043 (2001).

    Article 

    Google Scholar
     

  • Mata, L. et al. Large positive ecological changes of small urban greening actions. Ecol. Solut. Evid. 4, e12259 (2023).

    Article 

    Google Scholar
     

  • Threlfall, C. G. & Kendal, D. The distinct ecological and social roles that wild spaces play in urban ecosystems. Urban For. Urban Green 29, 348–356 (2018).

    Article 

    Google Scholar
     

  • Kühn, N. Intentions for the unintentional: spontaneous vegetation as the basis for innovative planting design in urban areas. J. Landsc. Arch. 1, 46–53 (2006).


    Google Scholar
     

  • Fröhlich, A. & Ciach, M. Dead tree branches in urban forests and private gardens are key habitat components for woodpeckers in a city matrix. Landsc. Urban Plan. 202, 103869 (2020).

    Article 

    Google Scholar
     

  • Le Roux, D. S. et al. Reduced availability of habitat structures in urban landscapes: implications for policy and practice. Landsc. Urban Plan. 125, 57–64 (2014).

    Article 

    Google Scholar
     

  • Oertli, B. & Parris, K. M. Toward management of urban ponds for freshwater biodiversity. Ecosphere 10, e02810 (2019).

    Article 

    Google Scholar
     

  • Paudel, S. & States, S. L. Urban green spaces and sustainability: exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For. Urban Green 84, 127932 (2023).

    Article 

    Google Scholar
     

  • Baldock, K. C. Opportunities and threats for pollinator conservation in global towns and cities. Curr. Opin. Insect Sci. 38, 63–71 (2020).

    Article 

    Google Scholar
     

  • Proske, A., Lokatis, S. & Rolff, J. Impact of mowing frequency on arthropod abundance and diversity in urban habitats: a meta-analysis. Urban For. Urban Green 76, 127714 (2022).

    Article 

    Google Scholar
     

  • Yang, F. et al. Relationships between multi-scale factors, plant and pollinator diversity, and composition of park lawns and other herbaceous vegetation in a fast growing megacity of China. Landsc. Urban Plan. 185, 117–126 (2019).

    Article 

    Google Scholar
     

  • Fischer, L. K. et al. Public attitudes toward biodiversity-friendly greenspace management in Europe. Conserv. Lett. 13, e12718 (2020).

    Article 

    Google Scholar
     

  • Li, X.-P., Fan, S.-X., Kühn, N., Dong, L. & Hao, P.-Y. Residents’ ecological and aesthetical perceptions toward spontaneous vegetation in urban parks in China. Urban For. Urban Green 44, 126397 (2019).

    Article 

    Google Scholar
     

  • Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? J. Appl. Ecol. 52, 1156–1164 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dunnett, N. & Hitchmough, J. (eds) The Dynamic Landscape: Design, Ecology and Management of Naturalistic Urban Planting (Taylor & Francis, 2004).

  • Kühn, N. Staudenverwendung (Ulmer, 2024).

  • Klaus, V. H. & Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 52, 82–94 (2021).

    Article 

    Google Scholar
     

  • Zerbe, S. in Restoration of Multifunctional Cultural Landscapes: Merging Tradition and Innovation for a Sustainable Future (ed. Zerbe, S.) 497–513 (Springer International Publishing, 2022).

  • Fischer, L. K., Lippe, M., von der, Rillig, M. C. & Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 159, 119–126 (2013).

    Article 

    Google Scholar
     

  • Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17 (2019).

    Article 

    Google Scholar
     

  • Bonthoux, S. & Chollet, S. Wilding cities for biodiversity and people: a transdisciplinary framework. Biol. Rev. 99, 1458–1480 (2024).

    Article 

    Google Scholar
     

  • Lum, S. & Kang Min, N. Lessons in ecology and conservation from a tropical forest fragment in Singapore. Biol. Conserv. 254, 108847 (2021).

    Article 

    Google Scholar
     

  • Sen, A. & Pattanaik, S. Politics of biodiversity conservation and socio ecological conflicts in a city: the case of Sanjay Gandhi National Park, Mumbai. J. Agric. Environ. Ethics 29, 305–326 (2016).

    Article 

    Google Scholar
     

  • Gandy, M. Marginalia: aesthetics, ecology, and urban wastelands. Ann. Assoc. Am. Geogr. 103, 1301–1316 (2013).

    Article 

    Google Scholar
     

  • Meffert, P. J. & Dziock, F. What determines occurrence of threatened bird species on urban wastelands? Biol. Conserv. 153, 87–96 (2012).

    Article 

    Google Scholar
     

  • Zoderer, B. M. & Hainz-Renetzeder, C. Enabling wild nature experiences in cities: a spatial analysis of institutional and physical barriers to using wild nature areas in Vienna, Austria. Landsc. Urban Plan. 254, 105228 (2025).

    Article 

    Google Scholar
     

  • Bonthoux, S., Voisin, L., Bouché-Pillon, S. & Chollet, S. More than weeds: spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 185, 163–172 (2019).

    Article 

    Google Scholar
     

  • Zoderer, B. M., Hainz-Renetzeder, C. & Vuolo, F. Mapping wild nature areas to identify priority areas for urban rewilding in cities: a process-oriented approach. Urban For. Urban Green 101, 128549 (2024).

    Article 

    Google Scholar
     

  • Hwang, Y. H., Yue, Z. E. J., Ling, S. K. & Tan, H. H. V. It’s ok to be wilder: preference for natural growth in urban green spaces in a tropical city. Urban For. Urban Green 38, 165–176 (2019).

    Article 

    Google Scholar
     

  • Kowarik, I. Working with wilderness: a promising direction for urban green spaces. Landsc. Archit. Front. 9, 92–103 (2021).

    Article 

    Google Scholar
     

  • Li, J. & Nassauer, J. I. Cues to care: a systematic analytical review. Landsc. Urban Plan. 201, 103821 (2020).

    Article 

    Google Scholar
     

  • MacDougall, A. S. & Turkington, R. Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86, 42–55 (2005).

    Article 

    Google Scholar
     

  • Bartz, R. & Kowarik, I. Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota 43, 69–99 (2019).

    Article 

    Google Scholar
     

  • Robertson, P. A. et al. A proposed unified framework to describe the management of biological invasions. Biol. Invas. 22, 2633–2645 (2020).

    Article 

    Google Scholar
     

  • Straka, T. M. et al. Beyond values: how emotions, anthropomorphism, beliefs and knowledge relate to the acceptability of native and non-native species management in cities. People Nat. 4, 1485–1499 (2022).

    Article 

    Google Scholar
     

  • Sádlo, J., Vítková, M., Pergl, J. & Pyšek, P. Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota 35, 1–34 (2017).

    Article 

    Google Scholar
     

  • Colléony, A., Levontin, L. & Shwartz, A. Promoting meaningful and positive nature interactions for visitors to green spaces. Conserv. Biol. 34, 1373–1382 (2020).

    Article 

    Google Scholar
     

  • Cerda, C., Guenat, S., Egerer, M. & Fischer, L. K. Home food gardening: benefits and barriers during the COVID-19 pandemic in Santiago, Chile. Front. Sustain. Food Syst. 6, 841386 (2022).

    Article 

    Google Scholar
     

  • Mumaw, L. & Mata, L. Wildlife gardening: an urban nexus of social and ecological relationships. Front. Ecol. Environ. 20, 379–385 (2022).

    Article 

    Google Scholar
     

  • Samus, A., Freeman, C., Dickinson, K. J. M. & Van Heezik, Y. Relationships between nature connectedness, biodiversity of private gardens, and mental well-being during the Covid-19 lockdown. Urban For. Urban Green 69, 127519 (2022).

    Article 

    Google Scholar
     

  • Amiri, A., Geravandi, S. & Rostami, F. Potential effects of school garden on students’ knowledge, attitude and experience: a pilot project on sixth grade students in Iran. Urban For. Urban Green 62, 127174 (2021).

    Article 

    Google Scholar
     

  • Askerlund, P., Almers, E., Tuvendal, M. & Waite, S. Growing nature connection through greening schoolyards: preschool teachers’ response to ecosystem services innovations. Education 3-13 52, 1341–1352 (2024).

    Article 

    Google Scholar
     

  • Egerer, M. & Kowarik, I. Confronting the modern Gordian knot of urban beekeeping. Trends Ecol. Evol. 35, 956–959 (2020).

    Article 

    Google Scholar
     

  • MacInnis, G., Normandin, E. & Ziter, C. D. Decline in wild bee species richness associated with honey bee (Apis mellifera L.) abundance in an urban ecosystem. PeerJ 11, e14699 (2023).

    Article 

    Google Scholar
     

  • Guenat, S., Bailey-Athias, J. P. & Fischer, L. K. Urban foraging in Brazilian public greenspaces. Ambio 52, 1248–1261 (2023).

    Article 

    Google Scholar
     

  • Shackleton, C. M., Hurley, P. T., Dahlberg, A. C., Emery, M. R. & Nagendra, H. Urban foraging: a ubiquitous human practice overlooked by urban planners, policy, and research. Sustainability 9, 1884 (2017).

    Article 

    Google Scholar
     

  • Fischer, L. K. & Kowarik, I. Connecting people to biodiversity in cities of tomorrow: is urban foraging a powerful tool? Ecol. Indic. 112, 106087 (2020).

    Article 

    Google Scholar
     

  • Sardeshpande, M. & Shackleton, C. Urban foraging: land management policy, perspectives, and potential. PLoS ONE 15, e0230693 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shwartz, A. et al. Urban biodiversity, city-dwellers and conservation: how does an outdoor activity day affect the human–nature relationship? PLoS ONE 7, e38642 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mumaw, L. M. & Raymond, C. M. A framework for catalysing the rapid scaling of urban biodiversity stewardship programs. J. Environ. Manag. 292, 112745 (2021).

    Article 

    Google Scholar
     

  • Peter, M., Diekötter, T., Höffler, T. & Kremer, K. Biodiversity citizen science: outcomes for the participating citizens. People Nat. 3, 294–311 (2021).

    Article 

    Google Scholar
     

  • Butler, C. W., Hamlin, I., Richardson, M., Lowe, M. & Fox, R. Connection for conservation: the impact of counting butterflies on nature connectedness and wellbeing in citizen scientists. Biol. Conserv. 292, 110497 (2024).

    Article 

    Google Scholar
     

  • Toomey, A. H., Strehlau-Howay, L., Manzolillo, B. & Thomas, C. The place-making potential of citizen science: creating social-ecological connections in an urbanized world. Landsc. Urban Plan. 200, 103824 (2020).

    Article 

    Google Scholar
     

  • Greving, H. et al. Improving attitudes and knowledge in a citizen science project about urban bat ecology. Ecol. Soc. https://doi.org/10.5751/ES-13272-270224 (2022).

  • Whitburn, J., Linklater, W. L. & Milfont, T. L. Exposure to urban nature and tree planting are related to pro-environmental behavior via connection to nature, the use of nature for psychological restoration, and environmental attitudes. Environ. Behav. 51, 787–810 (2019).

    Article 

    Google Scholar
     

  • Lewis, D. L. et al. Foraging ecology of black bears in urban environments: guidance for human–bear conflict mitigation. Ecosphere 6, art141 (2015).

    Article 

    Google Scholar
     

  • Ávila, M. & Ernstson, H. in Grounding Urban Natures (eds Ernstson, H. & Sorlin, S.) Ch. 5 (MIT Press, 2019).

  • Veríssimo, D., Tully, B. & Douglas, L. R. in Human–Wildlife Interactions (eds Frank, B., Glikman, J. A. & Marchini, S.) 335–358 (Cambridge Univ. Press, 2019).

  • Tuttle, M. D. in Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C.) 363–391 (Springer, 2013).

  • Khoo, M. D. Y. & Lee, B. P. Y.-H. The urban smooth-coated otters Lutrogale perspicillata of Singapore: a review of the reasons for success. Int. Zoo. Yearb. 54, 60–71 (2020).

    Article 

    Google Scholar
     

  • Costadone, L. & Vierikko, K. Are traditional urban greening actions compliant with the European Greening Plans guidance? Urban For. Urban Green 90, 128131 (2023).

    Article 

    Google Scholar
     

  • Simon, D. et al. Developing and testing the Urban Sustainable Development Goal’s targets and indicators — a five-city study. Environ. Urban 28, 49–63 (2016).

    Article 

    Google Scholar
     

  • von Haaren, C., Lovett, A. A. & Albert, C. in Landscape Planning with Ecosystem Services: Theories and Methods for Application in Europe (eds von Haaren, C., Lovett, A. A. & Albert, C.) 19–42 (Springer, 2019).

  • Lebrun, P., Walz, A., Albert, C. & Lipp, T. Ecosystem-based adaptation in cities: use of formal and informal planning instruments. Land Use Policy 109, 105722 (2021).

    Article 

    Google Scholar
     

  • Sankowska, P.-J. Planning instruments and urban development management tools for smart cities. Case study: Ludwigsburg, Germany. In Int. Conf. on Smart Infrastructure and Construction (ICSIC) 177–186 (ICE Publishing, 2019).

  • Nadin, V., Cotella, G. & Schmitt, P. in Spatial Planning Systems in Europe (eds Nadin, V. et al.) 2–27 (Edward Elgar Publishing, 2024).

  • Mejía-Dugand, S. & Pizano-Castillo, M. Touching down in cities: territorial planning instruments as vehicles for the implementation of SDG strategies in cities of the Global South. Sustainability 12, 6778 (2020).

    Article 

    Google Scholar
     

  • Feng, S., Zhao, W., Zhan, T., Yan, Y. & Pereira, P. Land degradation neutrality: a review of progress and perspectives. Ecol. Indic. 144, 109530 (2022).

    Article 

    Google Scholar
     

  • Wende, W., Herberg, A. & Herzberg, A. Mitigation banking and compensation pools: improving the effectiveness of impact mitigation regulation in project planning procedures. Impact Assess. Proj. Apprais. 23, 101–111 (2005).

    Article 

    Google Scholar
     

  • Albrecht, J., Schumacher, J. & Wende, W. The German impact-mitigation regulation — a model for the EU’s no-net-loss strategy and biodiversity offsets? Environ. Policy Law 44, 317–332 (2014).


    Google Scholar
     

  • Thiele, J., Wiehe, J. & von Haaren, C. Participation 3.0 in the implementation of the energy transition—components and effectiveness of an interactive dialogue tool (Vision:En 2040). PLoS ONE 19, e0299270 (2024).

    Article 
    CAS 

    Google Scholar
     

  • von Haaren, C. & Othengrafen, F. The Babel Fish Toolkit: understanding and using behavioural mechanisms and interventions in landscape planning. DisP Plan. Rev. 55, 22–35 (2019).

    Article 

    Google Scholar
     

  • Leshinsky, R. & Legacy, C. (eds) Instruments of Planning: Tensions and Challenges for More Equitable and Sustainable Cities (Routledge, 2015).

  • Hansen, R. et al. Transformative or piecemeal? Changes in green space planning and governance in eleven European cities. Eur. Plan. Stud. 31, 2401–2424 (2023).

    Article 

    Google Scholar
     

  • Rössler, M., Nemeth, E. & Bruckner, A. Glass pane markings to prevent bird-window collisions: less can be more. Biologia 70, 535–541 (2015).

    Article 

    Google Scholar
     

  • Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401, 577–589 (2023).

    Article 

    Google Scholar
     

  • Sendall, J., Higgins, D., Leake, A., Cowie, H. & Birchby, D. A rapid economic assessment of Wildlife Trusts’ nature prescribing programmes. Lancet 404, S10 (2024).

    Article 

    Google Scholar
     

  • Lerman, S. B., Turner, V. K. & Bang, C. Homeowner associations as a vehicle for promoting native urban biodiversity. Ecol. Soc. 17, 45 (2012).

    Article 

    Google Scholar
     

  • Dearborn, D. C. & Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432–440 (2010).

    Article 

    Google Scholar
     

  • Lambert, M. & Schell, C. (eds) Urban Biodiversity and Equity: Justice-Centered Conservation in Cities (Oxford Univ. Press, 2023).

  • Ambrose-Oji, B. et al. Innovative Governance for Urban Green Infrastructure: A Guide for Practitioners (Green Surge, 2017).

  • Armsworth, P. R., Daily, G. C., Kareiva, P. & Sanchirico, J. N. Land market feedbacks can undermine biodiversity conservation. Proc. Natl. Acad. Sci. USA 103, 5403–5408 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Sponagel, C. et al. Integrated assessment of regional approaches for biodiversity offsetting in urban-rural areas—a future based case study from Germany using arable land as an example. Land Use Policy 117, 106085 (2022).

    Article 

    Google Scholar
     

  • Roe, M. H. et al. Urban national parks or national park cities? Town Ctry Plan. Q. Rev. Town Ctry Plan. Assoc. 87, 261–267 (2018).


    Google Scholar
     

  • Baró, F., Langemeyer, J., Łaszkiewicz, E. & Kabisch, N. Editorial to the special issue “Advancing urban ecosystem service implementation and assessment considering different dimensions of environmental justice”. Environ. Sci. Policy 115, 43–46 (2021).

    Article 

    Google Scholar
     

  • Rigolon, A. et al. Advancing green space equity via policy change: a scoping review and research agenda. Environ. Sci. Policy 157, 103765 (2024).

    Article 

    Google Scholar
     

  • Sen, A. & Nagendra, H. Local community engagement, environmental placemaking and stewardship by migrants: a case study of lake conservation in Bengaluru, India. Landsc. Urban Plan. 204, 103933 (2020).

    Article 

    Google Scholar
     

  • Sultana, R., Birtchnell, T. & Gill, N. Grassroots innovation for urban greening within a governance vacuum by slum dwellers in Dhaka. Sustainability 14, 11631 (2022).

    Article 

    Google Scholar
     

  • Wen, C., Albert, C. & von Haaren, C. Nature-based recreation for the elderly in urban areas: assessing opportunities and demand as planning support. Ecol. Process. 11, 44 (2022).

    Article 

    Google Scholar
     

  • Mundoli, S. & Nagendra, H. in The Routledge Handbook of Urban Ecology (eds Nilon, C. H. & Aronson, M. F. J.) 685–693 (Routledge, 2020).

  • Cocks, M. L. & Wiersum, F. Reappraising the concept of biocultural diversity: a perspective from South Africa. Hum. Ecol. 42, 727–737 (2014).

    Article 

    Google Scholar
     

  • Vierikko, K. et al. Considering the ways biocultural diversity helps enforce the urban green infrastructure in times of urban transformation. Curr. Opin. Environ. Sustain. 22, 7–12 (2016).

    Article 

    Google Scholar
     

  • Kremer, P., Haase, A. & Haase, D. The future of urban sustainability: smart, efficient, green or just? Introduction to the special issue. Sustain. Cities Soc. 51, 101761 (2019).

    Article 

    Google Scholar
     

  • Haase, D. et al. Greening cities — to be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat. Int. 64, 41–48 (2017).

    Article 

    Google Scholar
     

  • Browning, M. H. E. M. et al. Measuring the 3–30–300 rule to help cities meet nature access thresholds. Sci. Total. Environ. 907, 167739 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pierce, J. R. et al. Urban Nature Indexes tool offers comprehensive and flexible approach to monitoring urban ecological performance. npj Urban. Sustain. 4, 22 (2024).

    Article 

    Google Scholar
     

  • Beatley, T. Biophilic Cities (Island Press/Center for Resource Economics, 2011).

  • Parris, K. M. et al. The seven lamps of planning for biodiversity in the city. Cities 83, 44–53 (2018).

    Article 

    Google Scholar
     

  • Apfelbeck, B. et al. Designing wildlife-inclusive cities that support human–animal co-existence. Landsc. Urban Plan. 200, 103817 (2020).

    Article 

    Google Scholar
     

  • Hernandez-Santin, C., Amati, M., Bekessy, S. & Desha, C. Integrating biodiversity as a non-human stakeholder within urban development. Landsc. Urban Plan. 232, 104678 (2023).

    Article 

    Google Scholar
     

  • Kirk, H. et al. Building biodiversity into the urban fabric: a case study in applying Biodiversity Sensitive Urban Design (BSUD). Urban For. Urban Green 62, 127176 (2021).

    Article 

    Google Scholar
     

  • Basnou, C., Pino, J., Davies, C., Winkel, G. & De Vreese, R. Co-design processes to address nature-based solutions and ecosystem services demands: the long and winding road towards inclusive urban planning. Front. Sustain. Cities 2, 572556 (2020).

    Article 

    Google Scholar
     

  • Kabisch, N., Frantzeskaki, N. & Hansen, R. Principles for urban nature-based solutions. Ambio 51, 1388–1401 (2022).

    Article 

    Google Scholar
     

  • McPhearson, T., Kabisch, N. & Frantzeskaki, N. (eds) Nature-Based Solutions for Cities (Edward Elgar Publishing, 2023).

  • Mercado, G. et al. Supporting nature-based solutions via nature-based thinking across European and Latin American cities. Ambio 53, 79–94 (2024).

    Article 

    Google Scholar
     

  • Konijnendijk van den Bosch, C. C. Tree agency and urban forest governance. Smart Sustain. Built Environ. 5, 176–188 (2016).

    Article 

    Google Scholar
     



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img