Reexamination of honey bee Africanization in Mexico and other regions of the New World


  • Ruttner, F. Biogeography and Taxonomy of Honeybees (Springer, 1988).

    Book 

    Google Scholar
     

  • Meixner, M. D. et al. Standard methods for characterising subspecies and ecotypes of Apis mellifera. J. Apic. Res. 52, 1–28 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Franck, P., Garnery, L., Celebrano, G., Solignac, M. & Cornuet, J. M. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula). Mol. Ecol. 9, 907–921 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitfield, C. W. et al. Thrice out of Africa: ancient and recent expansions of the honey bee Apis mellifera. Science 314, 642–645 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dogantzis, K. A. et al. Thrice out of Asia and the adaptive radiation of the western honey bee. Sci. Adv. 7, 2151 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Franck, P. et al. Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86, 420–430 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carpenter, M. H. & Harpur, B. A. Genetic past, present, and future of the honey bee (Apis mellifera) in the United States of America. Apidologie 52, 63–79 (2021).

    Article 

    Google Scholar
     

  • Gonçalves, L. S., Stort, A. C. & De Jong, D. Beekeeping in Brazil. In The African Honey Bee (eds Gonçalves, L. S. et al.) (CRC Press, 1991).


    Google Scholar
     

  • Kerr, W. E. The history of the introduction of African bees in Brazil. South Afr. Bee J. 39, 33–35 (1967).


    Google Scholar
     

  • Magnus, R. M., Tripodi, A. D. & Szalanski, A. L. Mitochondrial dna diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States. Biochem. Genet. 52, 245–257 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tripodi, A. D., Tepedino, V. J. & Portman, Z. M. Timing of invasion by Africanized bees coincides with local extinction of a specialized pollinator of a rare poppy in Utah, USA. J. Apic. Sci. 63, 281–288 (2019).


    Google Scholar
     

  • Genchi García, M. L., Reynaldi, F. J. & Bravi, C. M. An update of Africanization in honey bee (Apis mellifera) populations in Buenos Aires, Argentina. J. Apic. Res. 57, 611–614 (2018).

    Article 

    Google Scholar
     

  • Litvinoff, L. et al. Morphometric and genetic characterization as tools for selection of Apis mellifera (Hymenoptera: Apidae) stocks in an area of natural hybridization in Argentina. Front. Insect Sci. https://doi.org/10.3389/finsc.2022.1073999 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porrini, L. P. et al. Southern limit of Africanized honey bees in Argentina inferred by mtDNA and wing geometric morphometric analysis. J. Apic. Res. 59, 648–657 (2020).

    Article 

    Google Scholar
     

  • Porrini, L. P. et al. Current genetic diversity of managed and commercially produced Apis mellifera colonies in Argentina inferred by wing geometric morphometrics and COI-COII mtDNA locus. Apidologie 53, 61 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fierro, M. M., Barraza, A., Maki, D. L. & Moffett, J. O. The effects of the first year of Africanization on honey bee populations in Chiapas México. Am. Bee J. (1987).

  • Moffett, J. O., Dale, L. M., Andre, T. & Fierro, M. M. The africanized bee in Chiapas, Mexico. Am. Bee J. (1987).

  • Quezada-Euán, J. J. G., Echazarreta, C. M. & Paxton, R. J. The distribution and range expansion of Africanized honey bees (Apis mellifera) in the state of Yucatan, Mexico. J. Apic. Res. 35, 85–95 (1996).

    Article 

    Google Scholar
     

  • Quezada-Euán, J. J. G. & Medina, L. M. Hybridization between European and Africanized honeybees (Apis mellifera L.) in tropical Yucatan, Mexico. I. Morphometric changes in feral and managed colonies. Apidologie 29, 555–568 (1998).

    Article 

    Google Scholar
     

  • Quezada-Euán, J. J. G. A retrospective history of the expansion of Africanized honeybees in Mexico. J. Apic. Res. 46, 295–300 (2007).

    Article 

    Google Scholar
     

  • Rubink, W. L., Luévano-Martinez, P., Sugden, E. A., Wilson, W. T. & Collins, A. M. Subtropical Apis mellifera (Hymenoptera: Apidae) swarming dynamics and Africanization rates in Northeastern Mexico and Southern Texas. Ann. Entomol. Soc. Am. 89, 243–251 (1996).

    Article 

    Google Scholar
     

  • Domínguez-Ayala, R. et al. Stock composition of northern neotropical honey bees: mitotype and morphotype diversity in Mexico (Hymenoptera: Apidae). Apidologie 47, 642–652 (2016).

    Article 

    Google Scholar
     

  • Quezada-Euán, J. J. G., Pérez-Castro, E. E. & de May-Itzá, W. J. Hybridization between European and African-derived honeybee populations (Apis mellifera) at different altitudes in Perú. Apidologie 34, 217–225 (2003).

    Article 

    Google Scholar
     

  • Gómez Leyva, J. F., Argüello Nájera, O., Vázquez Encino, P. J., Hernández Hernández, L. U. & Payró de la Cruz, E. Morphometric and molecular analysis (mtDNA) of honeybees (Apis mellifera L.) in the state of Tabasco, Mexico. Rev. Mex. Cienc. Pecu. 12, 1188–1207 (2021).

    Article 

    Google Scholar
     

  • Guzman-Novoa, E. et al. The process and outcome of the Africanization of honey bees in Mexico: Lessons and future directions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.608091 (2020).

    Article 

    Google Scholar
     

  • Medina, L. M. & Martin, S. J. A comparative study of Varroa jacobsoni reproduction in worker cells of honey bees (Apis mellifera) in England and Africanized bees in Yucatan, Mexico. Exp. Appl. Acarol. 23, 659–667 (1999).

    Article 

    Google Scholar
     

  • Contreras-Ramírez, D. N. et al. Defense, hygiene and production behavior of Apis mellifera L. ecotypes in Tabasco, Mexico. Rev. Mex. Cienc. Agríc. 7, 1867–1877 (2016).


    Google Scholar
     

  • Arechavaleta-Velasco, M. E., García-Figueroa, C., Alvarado-Avila, L. Y., Ramírez-Ramírez, F. J. & Alcalá-Escamilla, K. I. Results and impact of research on honeybee genetics and breeding conducted by INIFAP in Mexico. Rev. Mex. Cienc. Pecu. 12, 224–242 (2021).

    Article 

    Google Scholar
     

  • Payro-de la Cruz, E., Argüello-Nájera, O., May-Esquivel, F., Catzim-Rojas, F. J. & Gómez-Leyva, J. F. Selección de Apis mellifera por comportamiento y producción de miel en agroecosistemas de Tabasco, México. Ecosistemas Recur. Agropecu. 10, 1–15 (2023).


    Google Scholar
     

  • Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195 (2009).

    Article 

    Google Scholar
     

  • Šeparović, L. et al. Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim. Dyn. 41, 3167–3201 (2013).

    Article 

    Google Scholar
     

  • Rinderer, T. E. & Hellmich, R. L. The Processes of Africanization. In The African Honey Bee (eds Rinderer, T. E. & Hellmich, R. L.) (CRC Press, 1991).


    Google Scholar
     

  • Sheppard, W. S. & Smith, D. R. Identification of African-derived bees in the Americas: A survey of methods. Ann. Entomol. Soc. Am. 93, 159–176 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Daly, H. V., Hoelmer, K., Norman, P. & Allen, T. Computer-assisted measurement and identification of honey bees (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 75, 591–594 (1982).

    Article 

    Google Scholar
     

  • Rinderer, T. E. et al. Morphometric identification of Africanized and European honey bees using large reference populations. Apidologie 24, 569–585 (1993).

    Article 

    Google Scholar
     

  • Rinderer, T. E. et al. Field and simplified techniques for identifying Africanized and European honey bees. Field Simpl. Tech. Identify. Afr. Eur. Honey Bees 17, 33–48 (1986).


    Google Scholar
     

  • Rinderer, T. E. et al. Improved simple techniques for identifying Africanized and European honey bees. Apidologie 18, 179–196 (1987).

    Article 

    Google Scholar
     

  • Calfee, E., Agra, M. N., Palacio, M. A., Ramírez, S. R. & Coop, G. Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas. PLoS Genet. 16, e1009038 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Düttmann, C. et al. Africanized honeybee population (Apis mellifera L.) in Nicaragua: Forewing length and mitotype lineages. PLoS ONE 17, e0267600 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francoy, T. M. et al. Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie 39, 488–494 (2008).

    Article 

    Google Scholar
     

  • Tofilski, A. Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie 39, 558–563 (2008).

    Article 

    Google Scholar
     

  • Eimanifar, A., Brooks, S. A., Bustamante, T. & Ellis, J. D. Population genomics and morphometric assignment of western honey bees (Apis mellifera L.) in the Republic of South Africa. BMC Genom. 19, 615 (2018).

    Article 

    Google Scholar
     

  • Henriques, D. et al. Wing geometric morphometrics of workers and drones and single nucleotide polymorphisms provide similar genetic structure in the iberian honey bee (Apis mellifera iberiensis). Insects 11, 89 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oleksa, A. & Tofilski, A. Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie 46, 49–60 (2015).

    Article 

    Google Scholar
     

  • Hall, H. G. & Smith, D. R. Distinguishing African and European honeybee matrilines using amplified mitochondrial DNA. Proc. Natl. Acad. Sci. 88, 4548–4552 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, M. A. et al. Identification of Africanized honey bee (Hymenoptera: Apidae) Mitochondrial DNA: Validation of a rapid polymerase chain reaction-based assay. Ann. Entomol. Soc. Am. 96, 679–684 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Szalanski, A. & Tripodi, A. Assessing the utility of a PCR diagnostics marker for the identification of Africanized honey bee, Apis mellifera L., (Hymenoptera: Apidae) in the United States. Sociobiology 61, 234–236 (2014).

    Article 

    Google Scholar
     

  • Rangel, J. et al. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?. Ecol. Evol. 6, 2158–2169 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, N. C. et al. A SNP test to identify Africanized honeybees via proportion of ‘African’ ancestry. Mol. Ecol. Resour. 15, 1346–1355 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, N. C. et al. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera). Apidologie 48, 776–783 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nawrocka, A., Kandemir, İ, Fuchs, S. & Tofilski, A. Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie 49, 172–184 (2018).


    Google Scholar
     

  • Calfee, E., Agra, M., Palacio, M. A., Ramírez, S. & Coop, G. Apis mellifera wing images (Africanized honey bees). Bytes Dryad https://doi.org/10.25338/B8T032 (2020).

    Article 

    Google Scholar
     

  • Masaquiza, D. et al. Geometric morphometric analysis of wing shape to identify populations of Apis mellifera in Camagüey, Cuba. Insects 14, 306 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Masaquiza, D. & Arenal, A. Collection of images and raw coordinates of honey bee (Apis mellifera) wings from the central highlands of Ecuador. (2024).

  • Adams, D. C. & Otárola-Castillo, E. geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article 

    Google Scholar
     

  • Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. R J. 8, 289–317 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, H., Ganie, S. A. & Tofilski, A. Morphometric identification of an unknown honey bee colony: an example from north India. J. Apic. Sci. https://doi.org/10.2478/JAS-2024-0013 (2024).

    Article 

    Google Scholar
     

  • Klingenberg, C. P. & Monteiro, L. R. Distances and directions in multidimensional shape spaces: Implications for morphometric applications. Syst. Biol. 54, 678–688 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rinderer, T. E. et al. Morphometric differences among Africanized and European honey bees and their F1 hybrids (Hymenoptera: Apidae). Ann. Entomol. Soc. Am. 83, 346–351 (1990).

    Article 

    Google Scholar
     

  • Węgrzynowicz, P., Gerula, D., Tofilski, A., Panasiuk, B. & Bieńkowska, M. Maternal inheritance in hybrids of three honey bee subspecies. J. Apic. Sci. 63, 131–138 (2019).


    Google Scholar
     

  • Acevedo-Gonzalez, J. P. et al. Colonization history and population differentiation of the honey bees (Apis mellifera L.) in Puerto Rico. Ecol. Evol. 9, 10895–10902 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donthu, R. et al. HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations. BMC Bioinform. 25, 278 (2024).

    Article 

    Google Scholar
     

  • Everitt, T. et al. The genomic basis of adaptation to high elevations in Africanized honey bees. Genome Biol. Evol. 15, evad157 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galindo-Cardona, A., Acevedo-Gonzalez, J. P., Rivera-Marchand, B. & Giray, T. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico. BMC Genet. 14, 65 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, R. M., Wallberg, A., Simões, Z. L. P., Lawson, D. J. & Webster, M. T. Genomewide analysis of admixture and adaptation in the Africanized honeybee. Mol. Ecol. 26, 3603–3617 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohta, T. & Kimura, M. Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics 63, 229–238 (1969).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oleksa, A., Kusza, S. & Tofilski, A. Mitochondrial DNA suggests the introduction of honeybees of African ancestry to east-central Europe. Insects 12, 410 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daly, H. V. & Balling, S. S. Identification of Africanized Honeybees in the Western hemisphere by discriminant analysis. J. Kans. Entomol. Soc. 51, 857–869 (1978).


    Google Scholar
     



  • Source link

    More From Forest Beat

    Mapping benthic habitats in Bohai Bay, China

    Habitat classification schemeDeveloping a benthic habitat classification scheme is a fundamental step in benthic habitat mapping, providing a structured framework for organizing and...
    Biodiversity
    8
    minutes

    Effect of climate on traits of dominant and rare tree species...

    Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, SwitzerlandIris Hordijk, Chelsea Chisholm, Daniel S. Maynard & Thomas W. CrowtherWageningen University and Research, Wageningen,...
    Biodiversity
    15
    minutes

    CheloniansTraits: a comprehensive trait database of global turtles and tortoises

    Lyson, T. R. et al. Fossorial origin of the turtle shell. Current Biology 26, 1887–1894 (2016).CAS  PubMed  ...
    Biodiversity
    6
    minutes

    Data of the Insect Biome Atlas: a metabarcoding survey of the...

    Site selectionIn Sweden, sampling sites were selected following a stratified design based on the major landscape types as identified by the National Inventory...
    Biodiversity
    21
    minutes
    spot_imgspot_img