Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).
Garcia Molinos, J. et al. Climate, currents and species traits contribute to early stages of marine species redistribution. Commun. Biol. 5, 1329 (2022).
Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Late Cenozoic cooling restructured global marine plankton communities. Nature 614, 713–718 (2023).
Ratnarajah, L. et al. Monitoring and modelling marine zooplankton in a changing climate. Nat. Commun. 14, 564 (2023).
Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).
Bartoli, G. et al. Final closure of Panama and the onset of northern hemisphere glaciation. Earth Planet. Sci. Lett. 237, 33–44 (2005). pp.
Schmidt, D. N. The closure history of the Central American seaway: evidence from isotopes and fossils to models and molecules. Geo. Soc. L. https://doi.org/10.1144/TMS002.19 (2007)
O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).
Lam, A. R. & Leckie, R. M. Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio current extension, northwest Pacific Ocean. Micropaleontology 66, 177–268 (2020).
Steph, S. et al. Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue. Paleoceanography https://doi.org/10.1029/2008PA001645 (2010)
Montes, C. et al. Middle Miocene closure of the Central American seaway. Science 348, 226–229 (2015).
Dowsett, H. J. et al. Assessing confidence in Pliocene Sea surface temperatures to evaluate predictive models. Nat. Clim. Change 2, 365–371 (2012).
Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat.Commun. 7, 10646 (2016).
Miller, M. D., Adkins, J. F., Menemenlis, D. & Schodlok, M. P. The role of ocean cooling in setting glacial southern source bottom water salinity. Paleoceanography https://doi.org/10.1029/2012PA002297 (2012).
De La Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. & Foster, G. L. Atmospheric CO2 during the mid-Piacenzian Warm period and the M2 glaciation. Sci. Rep. 10, 1–8 (2020).
De Schepper, S. et al. Northern hemisphere glaciation during the globally warm early late Pliocene. PLoS ONE.8, e81508 (2013).
Yi, L. et al. Plio-Pleistocene deep-sea ventilation in the eastern Pacific and potential linkages with Northern Hemisphere glaciation. Sci. Adv. 9, eadd1467 (2023).
McClymont, E. L. et al. Climate evolution through the onset and intensification of Northern Hemisphere Glaciation. Rev. Geophys. 61, e2022RG000793 (2023).
Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).
Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).
Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).
Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).
Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE11, e0165522 (2016).
Antell, G. T., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proc. Natl. Acad. Sci. USA 118, e2017105118 (2021).
Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).
Todd, C. L., Schmidt, D. N., Robinson, M. M. & De Schepper, S. Planktic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanogr. Paleoclimatol. 35, e2019PA003738 (2020).
Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16, 3–1 (2002).
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).
Dowsett, H. et al. The relative stability of planktic Foraminifer Thermal Preferences over the Past 3 million Years. Geosciences 13, 71 (2023).
Kucera, M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev. Mar. Geol. 1, 213–262 (2007).
Jonkers, L. et al. Strong temperature gradients in the ice age North Atlantic Ocean revealed by plankton biogeography. Nat. Geosci. 16, 1114–1119 (2023).
Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. USA 100, 9884–9888 (2003).
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Strack, T. et al. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat. Ecol. Evol. 6, 1871–1880 (2022).
Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).
Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. USA 107, 10120–10124 (2010).
Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).
Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl. Acad. Sci. USA 117, 12891–12896 (2020).
Swain, A., Woodhouse, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature 629, 616–623 (2024).
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. & Erwin, D. H. Compilation and network analyses of Cambrian food webs. PLoS Biol. 6, e102 (2008).
Allesina, S. & Pascual, M. Food web models: a plea for groups. Ecol. Lett. 12, 652–662 (2009).
Frass, A. J., Kelly, D. C. & Peters, S. E. Macroevolutionary History of the Planktic Foraminifera. Annu. Rev. Earth Planet. Sci. 43, 139–166 (2015).
Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Origination of the modern- style diversity gradient 15 million years ago. Nature 614, 708–712 (2023).
Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).
Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).
Raja, N. B. & Kiessling, W. Out of the extratropics: The evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).
Lutz, B. P. Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7, 151 (2010).
Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-pliocene warm period and plio-pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).
Lam, A. R. et al. Pliocene to earliest Pleistocene (5–2.5 Ma) reconstruction of the Kuroshio Current Extension reveals a dynamic current. Paleoceanogr. Paleoclimatol.36, e2021PA004318 (2021).
Terada, R., & Watanabe, Y. Seaweeds and coastal environment in the Osumi Islands. In The Osumi Islands: Culture, society, industry and nature. Kagoshima University Research Center for the Pacific Islands (KURCPI) (eds. Kawai, K., Terada, R., Kuwahara, S.) 104–108 (Hokuto Shobo Publishing, Tokyo 2017).
Ford, H. L., Ravelo, A. C., Dekens, P. S., LaRiviere, J. P. & Wara, M. W. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state. Geophys. Res. Lett. 42, 4878–4887 (2015).
Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001).
Hayashi, T. et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. Commun. Earth Environ. 1, 25 (2020).
Wey, K.-Y. & Kennette, J. P. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1, 67–84 (1986).
Ying, R., Monteiro, F. M., Wilson, J. D., Ödalen, M. & Schmidt, D. N. Past foraminiferal acclimatization capacity is limited during future warming. Nature 636, 385–389 (2024).
Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).
Crichton, K. A. et al. What the geological past can tell us about the future of the ocean’s twilight zone. Nat. Commun. 14, 2376 (2023).
Chaabane, S. et al. Migrating is not enough for modern planktonic foraminifera in a changing ocean. Nature 636, 390–396 (2024).
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
Roy, T., Lombard, F., Bopp, L. & Gehlen, M. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic foraminifera. Biogeosciences 12, 2873–2889 (2015).
Pearson, P. N. Wall texture and higher taxonomy of Oligocene micro- and medioperforate planktonic foraminifera. In Atlas of Oligocene Planktonic Foraminifera (eds. Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A.) 415–428 (Cushman Foundation of Foraminiferal Research, Special Publication, 2018).
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar. Micropaleontol. 101, 127–145 (2013).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 1–237 (1953).
Chao, A. et al. Quantifying completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).
Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7−24 (2009).
Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).
Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).
Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).
Alroy, J. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 55–80 (2010).
Kocsis, ÁT., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol.10, 735–743 (2019).
Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007255 (2011).