Regional restructuring in planktic foraminifera communities through Pliocene-early Pleistocene climate variability


  • Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia Molinos, J. et al. Climate, currents and species traits contribute to early stages of marine species redistribution. Commun. Biol. 5, 1329 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Late Cenozoic cooling restructured global marine plankton communities. Nature 614, 713–718 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ratnarajah, L. et al. Monitoring and modelling marine zooplankton in a changing climate. Nat. Commun. 14, 564 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bartoli, G. et al. Final closure of Panama and the onset of northern hemisphere glaciation. Earth Planet. Sci. Lett. 237, 33–44 (2005). pp.

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, D. N. The closure history of the Central American seaway: evidence from isotopes and fossils to models and molecules. Geo. Soc. L. https://doi.org/10.1144/TMS002.19 (2007)

  • O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, A. R. & Leckie, R. M. Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio current extension, northwest Pacific Ocean. Micropaleontology 66, 177–268 (2020).

  • Steph, S. et al. Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue. Paleoceanography https://doi.org/10.1029/2008PA001645 (2010)

  • Montes, C. et al. Middle Miocene closure of the Central American seaway. Science 348, 226–229 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dowsett, H. J. et al. Assessing confidence in Pliocene Sea surface temperatures to evaluate predictive models. Nat. Clim. Change 2, 365–371 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat.Commun. 7, 10646 (2016).


    Google Scholar
     

  • Miller, M. D., Adkins, J. F., Menemenlis, D. & Schodlok, M. P. The role of ocean cooling in setting glacial southern source bottom water salinity. Paleoceanography https://doi.org/10.1029/2012PA002297 (2012).

  • De La Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. & Foster, G. L. Atmospheric CO2 during the mid-Piacenzian Warm period and the M2 glaciation. Sci. Rep. 10, 1–8 (2020).


    Google Scholar
     

  • De Schepper, S. et al. Northern hemisphere glaciation during the globally warm early late Pliocene. PLoS ONE.8, e81508 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, L. et al. Plio-Pleistocene deep-sea ventilation in the eastern Pacific and potential linkages with Northern Hemisphere glaciation. Sci. Adv. 9, eadd1467 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClymont, E. L. et al. Climate evolution through the onset and intensification of Northern Hemisphere Glaciation. Rev. Geophys. 61, e2022RG000793 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE11, e0165522 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antell, G. T., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proc. Natl. Acad. Sci. USA 118, e2017105118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Todd, C. L., Schmidt, D. N., Robinson, M. M. & De Schepper, S. Planktic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanogr. Paleoclimatol. 35, e2019PA003738 (2020).

    Article 

    Google Scholar
     

  • Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16, 3–1 (2002).

    Article 

    Google Scholar
     

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dowsett, H. et al. The relative stability of planktic Foraminifer Thermal Preferences over the Past 3 million Years. Geosciences 13, 71 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kucera, M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev. Mar. Geol. 1, 213–262 (2007).


    Google Scholar
     

  • Jonkers, L. et al. Strong temperature gradients in the ice age North Atlantic Ocean revealed by plankton biogeography. Nat. Geosci. 16, 1114–1119 (2023).

  • Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl. Acad. Sci. USA 100, 9884–9888 (2003).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Strack, T. et al. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat. Ecol. Evol. 6, 1871–1880 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl. Acad. Sci. USA 107, 10120–10124 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl. Acad. Sci. USA 117, 12891–12896 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swain, A., Woodhouse, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Biogeographic response of marine plankton to Cenozoic environmental changes. Nature 629, 616–623 (2024).

  • Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. & Erwin, D. H. Compilation and network analyses of Cambrian food webs. PLoS Biol. 6, e102 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allesina, S. & Pascual, M. Food web models: a plea for groups. Ecol. Lett. 12, 652–662 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Frass, A. J., Kelly, D. C. & Peters, S. E. Macroevolutionary History of the Planktic Foraminifera. Annu. Rev. Earth Planet. Sci. 43, 139–166 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Origination of the modern- style diversity gradient 15 million years ago. Nature 614, 708–712 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yasuhara, M. & Deutsch, C. A. Tropical biodiversity linked to polar climate. Nature 614, 626–628 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Raja, N. B. & Kiessling, W. Out of the extratropics: The evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, B. P. Low-latitude northern hemisphere oceanographic and climatic responses to early shoaling of the Central American Seaway. Stratigraphy 7, 151 (2010).

    Article 

    Google Scholar
     

  • Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-pliocene warm period and plio-pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lam, A. R. et al. Pliocene to earliest Pleistocene (5–2.5 Ma) reconstruction of the Kuroshio Current Extension reveals a dynamic current. Paleoceanogr. Paleoclimatol.36, e2021PA004318 (2021).

    Article 

    Google Scholar
     

  • Terada, R., & Watanabe, Y. Seaweeds and coastal environment in the Osumi Islands. In The Osumi Islands: Culture, society, industry and nature. Kagoshima University Research Center for the Pacific Islands (KURCPI) (eds. Kawai, K., Terada, R., Kuwahara, S.) 104–108 (Hokuto Shobo Publishing, Tokyo 2017).

  • Ford, H. L., Ravelo, A. C., Dekens, P. S., LaRiviere, J. P. & Wara, M. W. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state. Geophys. Res. Lett. 42, 4878–4887 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hayashi, T. et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. Commun. Earth Environ. 1, 25 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wey, K.-Y. & Kennette, J. P. Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1, 67–84 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Ying, R., Monteiro, F. M., Wilson, J. D., Ödalen, M. & Schmidt, D. N. Past foraminiferal acclimatization capacity is limited during future warming. Nature 636, 385–389 (2024).

  • Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Crichton, K. A. et al. What the geological past can tell us about the future of the ocean’s twilight zone. Nat. Commun. 14, 2376 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaabane, S. et al. Migrating is not enough for modern planktonic foraminifera in a changing ocean. Nature 636, 390–396 (2024).

  • Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Roy, T., Lombard, F., Bopp, L. & Gehlen, M. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic foraminifera. Biogeosciences 12, 2873–2889 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pearson, P. N. Wall texture and higher taxonomy of Oligocene micro- and medioperforate planktonic foraminifera. In Atlas of Oligocene Planktonic Foraminifera (eds. Wade, B. S., Olsson, R. K., Pearson, P. N., Huber, B. T. & Berggren, W. A.) 415–428 (Cushman Foundation of Foraminiferal Research, Special Publication, 2018).

  • Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D. & O’Regan, M. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Mar. Micropaleontol. 101, 127–145 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar
     

  • Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 1–237 (1953).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chao, A. et al. Quantifying completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).

    Article 

    Google Scholar
     

  • Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7−24 (2009).

  • Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).

    Article 

    Google Scholar
     

  • Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).

    Article 

    Google Scholar
     

  • Alroy, J. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 55–80 (2010).

    Article 

    Google Scholar
     

  • Kocsis, ÁT., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol.10, 735–743 (2019).

    Article 

    Google Scholar
     

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007255 (2011).



  • Source link

    More From Forest Beat

    why finding Leadbeater’s possum in NSW is such big news

    Until now, Victorians believed their state was the sole home for Leadbeater’s possum, their critically endangered state faunal emblem....
    Biodiversity
    5
    minutes

    AI-driven mangrove mapping on Farasan Islands, Saudi Arabia: enhancing the detection...

    ML integrated with spectral indices for mangrove mappingIn this study, the ML classifiers RF, SVM, GB and the ensemble approach were employed for...
    Biodiversity
    8
    minutes

    The late rise of sky-island vegetation in the European Alps

    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).Article  CAS  ...
    Biodiversity
    10
    minutes

    First national survey of terrestrial biodiversity using airborne eDNA

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ....
    Biodiversity
    10
    minutes
    spot_imgspot_img