Short time series obscure compensatory dynamics in ecological communities


  • Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Shoemaker, L. G. et al. Integrating the underlying structure of stochasticity into community ecology. Ecology 101, e02922 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

    Article 

    Google Scholar
     

  • Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ernest, S. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).

    Article 

    Google Scholar
     

  • Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431, 181–184 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity–stability relationships: statistical inevitability or ecological consequence? Am. Nat. 151, 277–282 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallett, L. M. et al. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95, 1693–1700 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ives, A. R., Gross, K. & Klug, J. L. Stability and variability in competitive communities. Science 286, 542–544 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Loreau, M. & De Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. Biodiversity stabilizes plant communities through statistical-averaging effects rather than compensatory dynamics. Nat. Commun. 13, 7804 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. A new variance ratio metric to detect the timescale of compensatory dynamics. Ecosphere 11, e03114 (2020).

    Article 

    Google Scholar
     

  • Shoemaker, L. G. et al. The long and the short of it: mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology 103, e3650 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Houlahan, J. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidson, J. L. & Shoemaker, L. G. Resistance and resilience to invasion is stronger in synchronous than compensatory communities. Ecology 104, e4162 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, Y. et al. Mechanistic links between biodiversity effects on ecosystem functioning and stability in a multi‐site grassland experiment. J. Ecol. 109, 3370–3378 (2021).

    Article 

    Google Scholar
     

  • Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Schluter, D. A variance test for detecting species associations, with some example applications. Ecology 65, 998–1005 (1984).

    Article 

    Google Scholar
     

  • Vasseur, D. A. & Gaedke, U. Spectral analysis unmasks synchronous and compensatory dynamics in plankton communities. Ecology 88, 2058–2071 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Brillinger, D. R. Time Series: Data Analysis and Theory (Society for Industrial and Applied Mathematics, 2001).

  • Luo, M. et al. The effects of dispersal on spatial synchrony in metapopulations differ by timescale. Oikos 130, 1762–1772 (2021).

    Article 

    Google Scholar
     

  • Fagan, W. F., Lynch, H. J. & Noon, B. R. Pitfalls and challenges of estimating population growth rate from empirical data: consequences for allometric scaling relations. Oikos 119, 455–464 (2010).

    Article 

    Google Scholar
     

  • Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).

    Article 

    Google Scholar
     

  • Pimm, S. L. & Redfearn, A. The variability of population densities. Nature 334, 613–614 (1988).

    Article 

    Google Scholar
     

  • Inchausti, P. & Halley, J. The long-term temporal variability and spectral colour of animal populations. Evol. Ecol. Res. 4, 1033–1048 (2002).


    Google Scholar
     

  • Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).

    Article 

    Google Scholar
     

  • Lepš, J. et al. Accounting for long‐term directional trends on year‐to‐year synchrony in species fluctuations. Ecography 42, 1728–1741 (2019).

    Article 

    Google Scholar
     

  • Hoover, C. et al. Forest inventory and analysis data in action: examples from eastern national forests. Trees For. People 7, 100178 (2022).

    Article 

    Google Scholar
     

  • Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907 (2021).

    Article 

    Google Scholar
     

  • Likens, G. E. The science of nature, the nature of science: long-term ecological studies at Hubbard Brook. Proc. Am. Philos. Soc. 143, 558–572 (1999).


    Google Scholar
     

  • Kominoski, J. S., Gaiser, E. E. & Baer, S. G. Advancing theories of ecosystem development through long-term ecological research. BioScience 68, 554–562 (2018).

    Article 

    Google Scholar
     

  • Wang, S. et al. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 102, e03332 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hastings, A. Timescales and the management of ecological systems. Proc. Natl Acad. Sci. USA 113, 14568–14573 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shriver, R. K. et al. Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecol. Lett. 22, 1357–1366 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Strogatz, S. Sync: The Emerging Science of Spontaneous Order (Penguin UK, 2004).

  • Luo, M. Code_spectral analysis_competition_synchrony. figshare https://figshare.com/s/52cd8c1a35f7cb8d801c (2025).



  • Source link

    More From Forest Beat

    (Bee) Sex in the city: a new study shows how urban...

    Bees are among the most important pollinators in the natural world, quietly sustaining ecosystems and food production. While honeybees often steal the spotlight,...
    Biodiversity
    3
    minutes

    Forecasting impacts of climate change on barking deer distribution in Pakistan

    Garcia-ulloa, J., Verones, F., Huijbregts, M. A. J. & Schipper, A. M. Article habitat fragmentation amplifies threats from habitat loss to mammal diversity...
    Biodiversity
    8
    minutes

    Mining must overcome challenges to contribute towards a nature-positive future

    The mining industry has decades of experience in restoration, biodiversity management and conservation, often beyond the mine fence. Emma Gagen, Director of Data and...
    Biodiversity
    0
    minutes

    The draft genome sequences of the cosmopolitan centric diatom, the genus...

    Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).Gordon, R....
    Biodiversity
    6
    minutes
    spot_imgspot_img