Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
Yan, P. et al. The essential role of biodiversity in the key axes of ecosystem function. Glob. Change Biol. 29, 4569–4585 (2023).
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841 (2019).
Li, J. et al. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biol. Biochem. 136, 107526 (2019).
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).
Hazard, C., Kruitbos, L., Davidson, H., Taylor, A. F. S. & Johnson, D. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. N. Phytol. 213, 852–863 (2017).
Ma, X. C. et al. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. N. Phytol. 229, 2957–2969 (2021).
Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).
Christiansen, C. T. et al. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob. Change Biol. 23, 406–420 (2017).
Wu, L. W. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).
Fei, S. L. et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. N. Phytol. 234, 1960–1966 (2022).
Wang, C., Guo, L. & Shen, R. F. Rare microbial communities drive ecosystem multifunctionality in acidic soils of southern China. Appl. Soil Ecol. 189, 104895 (2023).
Sasaki, T. et al. Plant and microbial community composition jointly determine moorland multifunctionality. J. Ecol. 110, 2507–2521 (2022).
Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92, 296–303 (2011).
Jiao, S., Lu, Y. H. & Wei, G. H. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Change Biol. 28, 140–153 (2022).
Wang, S. et al. How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology 102, e03347 (2021).
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).
Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).
Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. USA 94, 1857–1861 (1997).
Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).
Wang, G. Z. et al. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol. Lett. 22, 1221–1232 (2019).
Wagg, C. et al. Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other. J. Ecol. 103, 1233–1244 (2015).
Jia, P. et al. Plant diversity enhances the reclamation of degraded lands by stimulating plant-soil feedbacks. J. Appl. Ecol. 57, 1258–1270 (2020).
Fiedler, S. et al. Global change shifts trade-offs among ecosystem functions in woodlands restored for multifunctionality. J. Appl. Ecol. 58, 1705–1717 (2021).
Heilpern, S. A., Anujan, K., Osuri, A. & Naeem, S. Positive correlations in species functional contributions drive the response of multifunctionality to biodiversity loss. P. R. Soc. B. Biol. Sci. 287, 20192501 (2020).
Argens, L. et al. Relationships between ecosystem functions vary among years and plots and are driven by plant species richness. Oikos 2024, e10096 (2024).
Matsuoka, S., Suzuki, Y., Hobara, S. & Osono, T. Fungal succession and decomposition of composted aquatic plants applied to soil. Fungal Ecol. 35, 34–41 (2018).
Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).
Montesinos-Navarro, A., Segarra-Moragues, J. G., Valiente-Banuet, A. & Verdú, M. Fungal phylogenetic diversity drives plant facilitation. Oecologia 181, 533–541 (2016).
Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).
Wohl, D. L., Arora, S. & Gladstone, J. R. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85, 1534–1540 (2004).
Luo, Y. H. et al. Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology 103, e3745 (2022).
Li, J. et al. Fungi drive soil multifunctionality in the coastal salt marsh ecosystem. Sci. Total Environ. 818, 151673 (2022).
Maillard, F., Kennedy, P. G., Adamczyk, B., Heinonsalo, J. & Buée, M. Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest. Mol. Ecol. 30, 1921–1935 (2021).
Xu, Z. W. et al. Plant community diversity alters the response of ecosystem multifunctionality to multiple global change factors. Glob. Change Biol. 30, e17182 (2024).
Wang, F. Y., Liu, R. J., Lin, X. G. & Zhou, J. M. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14, 133–137 (2004).
Zhang, K. et al. Self-organized mud cracking amplifies the resilience of an iconic “Red Beach” salt marsh. Sci. Adv. 9, eabq3520 (2023).
Yi, S. et al. Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River basin. Sci. Total Environ. 774, 145198 (2021).
Lisner, A., Konecna, M., Blazek, P. & Leps, J. Community biomass is driven by dominants and their characteristics – The insight from a field biodiversity experiment with realistic species loss scenario. J. Ecol. 111, 240–250 (2023).
Chen, J. W. et al. Direct and indirect effects of dominant plants on ecosystem multifunctionality. Front. Plant Sci. 14, 1117903 (2023).
Frew, A., Heuck, M. K. & Aguilar-Trigueros, C. A. Host filtering, not competitive exclusion, may be the main driver of arbuscular mycorrhizal fungal community assembly under high phosphorus. Funct. Ecol. 37, 1856–1869 (2023).
Bruno, D., Gutiérrez-Cánovas, C., Sánchez-Fernández, D., Velasco, J. & Nilsson, C. Impacts of environmental filters on functional redundancy in riparian vegetation. J. Appl. Ecol. 53, 846–855 (2016).
Feng, J. W., Liu, W. T., Chen, J. J. & Zhang, C. L. Biogeography and ecology of Magnaporthales: a case study. Front Microbiol. 12, 654380 (2021).
Spanu, P. D. The genomics of obligate (and Nonobligate) biotrophs. Annu. Rev. Phytopathol. 50, 91–109 (2012).
Sesma, A. & Osbourn, A. E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582–586 (2004).
Hantsch, L., Braun, U., Scherer-Lorenzen, M. & Bruelheide, H. Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment. Ecosphere 4, 81 (2013).
Pichon, N. A. et al. Nitrogen availability and plant functional composition modify biodiversity-multifunctionality relationships. Ecol. Lett. 27, e14361 (2024).
Welc, M., Ravnskov, S., Kieliszewska-Rokicka, B. & Larsen, J. Suppression of other soil microorganisms by mycelium of arbuscular mycorrhizal fungi in root-free soil. Soil Biol. Biochem. 42, 1534–1540 (2010).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
de Gea, A. B., Hautier, Y. & Geisen, S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Glob. Change Biol. 29, 296–307 (2023).
Semenova, G. & Maarel, V. E. Plant functional types – a strategic perspective. J. Veg. Sci. 11, 917–922 (2000).
Zhou, T. R., Guo, T., Wang, Y., Wang, A. D. & Zhang, M. Y. Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health. Chemosphere 314, 137723 (2023).
Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: a review. J. Ecol. 109, 600–613 (2021).
Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
Wang, Y. X., Liu, G. H. & Zhao, Z. H. Spatial heterogeneity of soil fertility in coastal zones: a case study of the Yellow River Delta, China. J. Soils Sediment. 21, 1826–1839 (2021).
Cao Q. X. et al. Effects of vegetation restoration age on Soil C: N: P stoichiometry in Yellow River Delta coastal wetland of China. Chin. Geogr. Sci. 34, 1045−1059 (2024).
Hu, W. G. et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).
Ren, P. et al. Forest edges increase pollinator network robustness to extinction with declining area. Nat. Ecol. Evol. 7, 393–404 (2023).
Su, J., Zhao, Y., Xu, F. & Bai, Y. Multiple global changes drive grassland productivity and stability: a meta‐analysis. J. Ecol. 110, 2850–2869 (2022).
Gao, E. L., Ma, H., Yang, T., Kaiser-Bunbury, C. N. & Zhao, Z. G. Meadow transformations alter above- and below-ground ecological networks and ecosystem multifunctionality. Funct. Ecol. 37, 1703–1716 (2023).
Zirbel, C. R., Grman, E., Bassett, T. & Brudvig, L. A. Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity. Ecology 100, e02634 (2019).
Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 63 (2017).
Zhang, T. A., Chen, H. Y. H. & Ruan, H. H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).
Alef, K. & Kleiner, D. Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biol. Biochem. 18, 233–235 (1986).
Getaneh, S. et al. Impact of tree litter identity, litter diversity and habitat quality on litter decomposition rates in tropical moist evergreen forest. Ecosyst 9, 100023 (2022).
Mori, T., Aoyagi, R., Kitayama, K. & Mo, J. M. Does the ratio of beta-1,4-glucosidase to beta-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biol. Biochem. 160, 108363 (2021).
Parham, J. A. & Deng, S. P. Detection, quantification and characterization of beta-glucosaminidase activity in soil. Soil Biol. Biochem. 32, 1183–1190 (2000).
Turner, B. L., Hopkins, D. W., Haygarth, P. M. & Ostle, N. Beta-glucosidase activity in pasture soils. Appl. Soil Ecol. 20, 157–162 (2002).
Lazcano, C., Gomez-Brandon, M., Revilla, P. & Dominguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fert. Soils 49, 723–733 (2013).
Gillman, G. P., Sinclair, D. F. & Beech, T. A. Recovery of organic-carbon by the Walkley and black procedure in highly weathered soils. Commun. Soil Sci. Plan 17, 885–892 (1986).
Iskurt, C., Aliyev, E., Gengec, E., Kobya, M. & Khataee, A. Electrochemical oxidation of pretreated landfill leachate nanofiltration concentrate in terms of pollutants removal and formation of by-products. Chemosphere 307, 135954 (2022).
Downes, M. T. Improved hydrazine reduction method for automated-determination of low nitrate levels in freshwater. Water Res. 12, 673–675 (1978).
Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2012).
Xu, Z., Guo, X., S. Caplan, J., Li, M. & Guo, W. Novel plant-soil feedbacks drive adaption of invasive plants to soil legacies of native plants under nitrogen deposition. Plant Soil 467, 47–65 (2021).
Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465 (2012).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. Peerj 4, e2584 (2016).
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2019).
Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
Tan, G. et al. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 64, 778–791 (2015).
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
Ning, D. L. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).
Pölme, S. et al. FungalTraits: A user friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 107, 129–132 (2021).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Fox J. An R Companion to Applied Regression 3rd Edition, Vol. 608 (SAGE Publications, 2019).
Josse, Le. S. & Husson, J. F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 107, 5242–5247 (2010).
Gihring, T. M., Green, S. J. & Schadt, C. W. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ. Microbiol. 14, 285–290 (2012).
Hope R. M. Rmisc: Ryan Miscellaneous. R Package Version 151. https://CRAN.R-project.org/package=Rmisc (2022).
Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 26−10. https://CRAN.R-project.org/package=vegan (2025).
Archer E. rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics. R Package Version 252. https://CRAN.R-project.org/package=rfPermute (2023).
Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146 (2018).