Soil fungi influence the relationship between plant diversity and ecosystem multifunctionality


  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar
     

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar
     

  • van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, P. et al. The essential role of biodiversity in the key axes of ecosystem function. Glob. Change Biol. 29, 4569–4585 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biol. Biochem. 136, 107526 (2019).

    Article 
    CAS 

    Google Scholar
     

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article 

    Google Scholar
     

  • Hazard, C., Kruitbos, L., Davidson, H., Taylor, A. F. S. & Johnson, D. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. N. Phytol. 213, 852–863 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ma, X. C. et al. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality. N. Phytol. 229, 2957–2969 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christiansen, C. T. et al. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob. Change Biol. 23, 406–420 (2017).

    Article 

    Google Scholar
     

  • Wu, L. W. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, S. L. et al. Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. N. Phytol. 234, 1960–1966 (2022).

    Article 

    Google Scholar
     

  • Wang, C., Guo, L. & Shen, R. F. Rare microbial communities drive ecosystem multifunctionality in acidic soils of southern China. Appl. Soil Ecol. 189, 104895 (2023).

    Article 

    Google Scholar
     

  • Sasaki, T. et al. Plant and microbial community composition jointly determine moorland multifunctionality. J. Ecol. 110, 2507–2521 (2022).

    Article 

    Google Scholar
     

  • Schnitzer, S. A. et al. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92, 296–303 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Jiao, S., Lu, Y. H. & Wei, G. H. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Change Biol. 28, 140–153 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology 102, e03347 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. USA 94, 1857–1861 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. Z. et al. Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol. Lett. 22, 1221–1232 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wagg, C. et al. Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other. J. Ecol. 103, 1233–1244 (2015).

    Article 

    Google Scholar
     

  • Jia, P. et al. Plant diversity enhances the reclamation of degraded lands by stimulating plant-soil feedbacks. J. Appl. Ecol. 57, 1258–1270 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fiedler, S. et al. Global change shifts trade-offs among ecosystem functions in woodlands restored for multifunctionality. J. Appl. Ecol. 58, 1705–1717 (2021).

    Article 

    Google Scholar
     

  • Heilpern, S. A., Anujan, K., Osuri, A. & Naeem, S. Positive correlations in species functional contributions drive the response of multifunctionality to biodiversity loss. P. R. Soc. B. Biol. Sci. 287, 20192501 (2020).


    Google Scholar
     

  • Argens, L. et al. Relationships between ecosystem functions vary among years and plots and are driven by plant species richness. Oikos 2024, e10096 (2024).

  • Matsuoka, S., Suzuki, Y., Hobara, S. & Osono, T. Fungal succession and decomposition of composted aquatic plants applied to soil. Fungal Ecol. 35, 34–41 (2018).

    Article 

    Google Scholar
     

  • Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Montesinos-Navarro, A., Segarra-Moragues, J. G., Valiente-Banuet, A. & Verdú, M. Fungal phylogenetic diversity drives plant facilitation. Oecologia 181, 533–541 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wohl, D. L., Arora, S. & Gladstone, J. R. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85, 1534–1540 (2004).

    Article 

    Google Scholar
     

  • Luo, Y. H. et al. Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology 103, e3745 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Fungi drive soil multifunctionality in the coastal salt marsh ecosystem. Sci. Total Environ. 818, 151673 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maillard, F., Kennedy, P. G., Adamczyk, B., Heinonsalo, J. & Buée, M. Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest. Mol. Ecol. 30, 1921–1935 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. W. et al. Plant community diversity alters the response of ecosystem multifunctionality to multiple global change factors. Glob. Change Biol. 30, e17182 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. Y., Liu, R. J., Lin, X. G. & Zhou, J. M. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14, 133–137 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. Self-organized mud cracking amplifies the resilience of an iconic “Red Beach” salt marsh. Sci. Adv. 9, eabq3520 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, S. et al. Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River basin. Sci. Total Environ. 774, 145198 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lisner, A., Konecna, M., Blazek, P. & Leps, J. Community biomass is driven by dominants and their characteristics – The insight from a field biodiversity experiment with realistic species loss scenario. J. Ecol. 111, 240–250 (2023).

    Article 

    Google Scholar
     

  • Chen, J. W. et al. Direct and indirect effects of dominant plants on ecosystem multifunctionality. Front. Plant Sci. 14, 1117903 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frew, A., Heuck, M. K. & Aguilar-Trigueros, C. A. Host filtering, not competitive exclusion, may be the main driver of arbuscular mycorrhizal fungal community assembly under high phosphorus. Funct. Ecol. 37, 1856–1869 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bruno, D., Gutiérrez-Cánovas, C., Sánchez-Fernández, D., Velasco, J. & Nilsson, C. Impacts of environmental filters on functional redundancy in riparian vegetation. J. Appl. Ecol. 53, 846–855 (2016).

    Article 

    Google Scholar
     

  • Feng, J. W., Liu, W. T., Chen, J. J. & Zhang, C. L. Biogeography and ecology of Magnaporthales: a case study. Front Microbiol. 12, 654380 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spanu, P. D. The genomics of obligate (and Nonobligate) biotrophs. Annu. Rev. Phytopathol. 50, 91–109 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sesma, A. & Osbourn, A. E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582–586 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hantsch, L., Braun, U., Scherer-Lorenzen, M. & Bruelheide, H. Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment. Ecosphere 4, 81 (2013).

    Article 

    Google Scholar
     

  • Pichon, N. A. et al. Nitrogen availability and plant functional composition modify biodiversity-multifunctionality relationships. Ecol. Lett. 27, e14361 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Welc, M., Ravnskov, S., Kieliszewska-Rokicka, B. & Larsen, J. Suppression of other soil microorganisms by mycelium of arbuscular mycorrhizal fungi in root-free soil. Soil Biol. Biochem. 42, 1534–1540 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Gea, A. B., Hautier, Y. & Geisen, S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Glob. Change Biol. 29, 296–307 (2023).

    Article 

    Google Scholar
     

  • Semenova, G. & Maarel, V. E. Plant functional types – a strategic perspective. J. Veg. Sci. 11, 917–922 (2000).

    Article 

    Google Scholar
     

  • Zhou, T. R., Guo, T., Wang, Y., Wang, A. D. & Zhang, M. Y. Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health. Chemosphere 314, 137723 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: a review. J. Ecol. 109, 600–613 (2021).

    Article 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar
     

  • Wang, Y. X., Liu, G. H. & Zhao, Z. H. Spatial heterogeneity of soil fertility in coastal zones: a case study of the Yellow River Delta, China. J. Soils Sediment. 21, 1826–1839 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao Q. X. et al. Effects of vegetation restoration age on Soil C: N: P stoichiometry in Yellow River Delta coastal wetland of China. Chin. Geogr. Sci. 34, 1045−1059 (2024).

  • Hu, W. G. et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, P. et al. Forest edges increase pollinator network robustness to extinction with declining area. Nat. Ecol. Evol. 7, 393–404 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, J., Zhao, Y., Xu, F. & Bai, Y. Multiple global changes drive grassland productivity and stability: a meta‐analysis. J. Ecol. 110, 2850–2869 (2022).

    Article 

    Google Scholar
     

  • Gao, E. L., Ma, H., Yang, T., Kaiser-Bunbury, C. N. & Zhao, Z. G. Meadow transformations alter above- and below-ground ecological networks and ecosystem multifunctionality. Funct. Ecol. 37, 1703–1716 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zirbel, C. R., Grman, E., Bassett, T. & Brudvig, L. A. Landscape context explains ecosystem multifunctionality in restored grasslands better than plant diversity. Ecology 100, e02634 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 63 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, T. A., Chen, H. Y. H. & Ruan, H. H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alef, K. & Kleiner, D. Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biol. Biochem. 18, 233–235 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Getaneh, S. et al. Impact of tree litter identity, litter diversity and habitat quality on litter decomposition rates in tropical moist evergreen forest. Ecosyst 9, 100023 (2022).

    Article 

    Google Scholar
     

  • Mori, T., Aoyagi, R., Kitayama, K. & Mo, J. M. Does the ratio of beta-1,4-glucosidase to beta-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biol. Biochem. 160, 108363 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Parham, J. A. & Deng, S. P. Detection, quantification and characterization of beta-glucosaminidase activity in soil. Soil Biol. Biochem. 32, 1183–1190 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Turner, B. L., Hopkins, D. W., Haygarth, P. M. & Ostle, N. Beta-glucosidase activity in pasture soils. Appl. Soil Ecol. 20, 157–162 (2002).

    Article 

    Google Scholar
     

  • Lazcano, C., Gomez-Brandon, M., Revilla, P. & Dominguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fert. Soils 49, 723–733 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Gillman, G. P., Sinclair, D. F. & Beech, T. A. Recovery of organic-carbon by the Walkley and black procedure in highly weathered soils. Commun. Soil Sci. Plan 17, 885–892 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Iskurt, C., Aliyev, E., Gengec, E., Kobya, M. & Khataee, A. Electrochemical oxidation of pretreated landfill leachate nanofiltration concentrate in terms of pollutants removal and formation of by-products. Chemosphere 307, 135954 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Downes, M. T. Improved hydrazine reduction method for automated-determination of low nitrate levels in freshwater. Water Res. 12, 673–675 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol. 112, 79–89 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z., Guo, X., S. Caplan, J., Li, M. & Guo, W. Novel plant-soil feedbacks drive adaption of invasive plants to soil legacies of native plants under nitrogen deposition. Plant Soil 467, 47–65 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. Peerj 4, e2584 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2019).

    Article 

    Google Scholar
     

  • Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, G. et al. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 64, 778–791 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar
     

  • Ning, D. L. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pölme, S. et al. FungalTraits: A user friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers 107, 129–132 (2021).

    Article 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Fox J. An R Companion to Applied Regression 3rd Edition, Vol. 608 (SAGE Publications, 2019).

  • Josse, Le. S. & Husson, J. F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).


    Google Scholar
     

  • Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 107, 5242–5247 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gihring, T. M., Green, S. J. & Schadt, C. W. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ. Microbiol. 14, 285–290 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hope R. M. Rmisc: Ryan Miscellaneous. R Package Version 151. https://CRAN.R-project.org/package=Rmisc (2022).

  • Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 26−10. https://CRAN.R-project.org/package=vegan (2025).

  • Archer E. rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics. R Package Version 252. https://CRAN.R-project.org/package=rfPermute (2023).

  • Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    More From Forest Beat

    (Bee) Sex in the city: a new study shows how urban...

    Bees are among the most important pollinators in the natural world, quietly sustaining ecosystems and food production. While honeybees often steal the spotlight,...
    Biodiversity
    3
    minutes

    Forecasting impacts of climate change on barking deer distribution in Pakistan

    Garcia-ulloa, J., Verones, F., Huijbregts, M. A. J. & Schipper, A. M. Article habitat fragmentation amplifies threats from habitat loss to mammal diversity...
    Biodiversity
    8
    minutes

    Mining must overcome challenges to contribute towards a nature-positive future

    The mining industry has decades of experience in restoration, biodiversity management and conservation, often beyond the mine fence. Emma Gagen, Director of Data and...
    Biodiversity
    0
    minutes

    The draft genome sequences of the cosmopolitan centric diatom, the genus...

    Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).Gordon, R....
    Biodiversity
    6
    minutes
    spot_imgspot_img