Spatial distribution of exotic lumbricid earthworm Octolasion tyrtaeum in endangered Taxus contorta stands across Northwest Himalayan moist temperate forests


  • Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A. & Brook, B. W. Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers. Conserv. 16, 153–163. https://doi.org/10.1007/s10531-006-9038-5 (2007).

    Article 

    Google Scholar
     

  • Schlickhoff, U. Man’s impact on vegetation and landscape in the Kaghan valley Pakistan. Pak. J. For. 43, 128–148 (1993).


    Google Scholar
     

  • Knudsen, A. J. Deforestation and entrepreneurship in NWFP, Pakistan. Chr. Michelsen. Ins. Fantoft 38 (1994).

  • Samant, S. S. Diversity, nativity and endemism of vascular plants in a part of Nanda Devi biosphere reserve in west Himalaya I. Himal. Biosph. Reserve (Biannu. Bull.) 1(1&2), 1–28 (1999).


    Google Scholar
     

  • Thomas, P. & Farjon, A. Taxus wallichiana. IUCN Red List Threat. Species 2011–2012 (2011).

  • Philip, T. A review of the distribution and conservation status of Taxus in the Himalayas, China and Southeast Asia. III Jorna. Int. Sobre el Tejo (Taxus baccata L.) https://doi.org/10.5261/2011.ESP2.04 (2011).

    Article 

    Google Scholar
     

  • Lavelle, P. & Spain, A. V. Soil Ecology (Kluwer Scientific Publications, 2001).


    Google Scholar
     

  • Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33(4), 159–193. https://doi.org/10.4236/as.2014.514160 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64(2), 161–182. https://doi.org/10.1111/ejss.12025 (2013).

    Article 

    Google Scholar
     

  • Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M. & Bottinelli, N. Let earthworms be functional-definition of new functional groups based on their bioturbation behavior. Soil Biol. Biochem. 188, 109209. https://doi.org/10.1016/j.soilbio.2023.109209 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kanianska, R., Jaďuďová, J., Makovníková, J. & Kizeková, M. Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability 8(9), 906. https://doi.org/10.3390/su8090906 (2016).

    Article 

    Google Scholar
     

  • Singh, K., Julka, J. M., Yadav, S. & Reynolds, J. W. Drilosphere’s relevance for the functioning of the agroecosystem: A review. Megadrilogica 28(7) (2024).

  • Misirlioğlu, M. et al. Earthworms (Clitellata, Megadrili) of the world: An updated checklist of valid species and families, with notes on their distribution. Zootaxa 5255(1), 417–438. https://doi.org/10.11646/zootaxa.5255.1.33 (2023).

    Article 

    Google Scholar
     

  • Bohlen, P. J., Pelletier, D. M., Groffman, P. M., Fahey, T. J. & Fisk, M. C. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystem 7, 13–27. https://doi.org/10.1007/s10021-003-0127-y (2004).

    Article 
    CAS 

    Google Scholar
     

  • Craven, D. et al. The unseen invaders: Introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob. Chang. Biol. 23(3), 1065–1074. https://doi.org/10.1111/gcb.13446 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ahmed, S. & Julka, J. M. Annelida: Clitellata: Megadrili (Earthworms). Fauna Himachal Pradesh, State Fauna Ser. 26, 57–70 (2021).


    Google Scholar
     

  • Sharma, A., Ahmed, S. & Julka, J. M. A survey of earthworm diversity in different land use types in mid hills of northwest Himalayas India. Megadrilogica 24(11), 137–142 (2019).


    Google Scholar
     

  • Ahmed, S., Julka, J. M. & Kumar, H. Earthworms (Annelida: Clitellata: Megadrili) of Solan, a constituent of Himalayan biodiversity hotspot, India. Travaux du Museum Natl. d’Histoire Naturelle Grigore Antipa 63(1), 19–50. https://doi.org/10.3897/travaux.63.e49099 (2020).

    Article 

    Google Scholar
     

  • Gudeta, K. et al. Impact of aboveground vegetation on abundance, diversity, and biomass of earthworms in selected land use systems as a model of synchrony between aboveground and belowground habitats in mid-Himalaya India. Soil Syst. 6(4), 76. https://doi.org/10.3390/soilsystems6040076 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ahmed, S., Marimuthu, N., Tripathy, B., Julka, J. M. & Chandra, K. Earthworm community structure and diversity in different land-use systems along an elevation gradient in the Western Himalaya, India. Appl. Soil Ecol. 176, 104468. https://doi.org/10.1016/j.apsoil.2022.104468 (2022).

    Article 

    Google Scholar
     

  • Ferlian, O. et al. Invasive earthworms erode soil biodiversity: A meta-analysis. J. Anim. Ecol. 87, 162–172. https://doi.org/10.1111/1365-2656.12746 (2018).

    Article 

    Google Scholar
     

  • Eisenhauer, N., Partsch, S., Parkinson, D. & Scheu, S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol. Biochem. 39(5), 1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Straube, D., Johnson, E. A., Parkinson, D., Scheu, S. & Eisenhauer, N. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos 118(6), 885–896. https://doi.org/10.1111/j.1600-0706.2009.17405.x (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Julka, J. M. & Paliwal, R. Distribution of earthworms in different agro-climatic region of India. In Soil Biodiversity, Ecological Processes and Landscape 3–13 (Oxford and ABH Publications Co. Pvt., 2005).

  • Pandey, R. et al. Vegetation characteristics based climate change vulnerability assessment of temperate forests of Western Himalaya. Forests 13(6), 848. https://doi.org/10.3390/f13060848 (2022).

    Article 

    Google Scholar
     

  • Negi, V., Bhardwaj, D. R., Sharma, P. & Pala, N. A. Tree species composition and diversity in natural temperate forests of the North-Western Himalayas. Acta. Ecol. Sin. 42(6), 653–660. https://doi.org/10.1016/j.chnaes.2021.09.014 (2022).

    Article 

    Google Scholar
     

  • FAO and UNEP. The State of the World’s Forests: Forests, Biodiversity and People (2020).

  • Ahmed, S. Diversity and distribution of earthworms with special reference to their population dynamics in selected land use systems along an altitude gradient in mid Himalaya. Thesis, 1–244. https://shodhganga.inflibnet.ac.in/handle/10603/262495 (2018).

  • Swift, M. & Bignell, D. Standard Methods for Assessment of Soil Biodiversity and Land Use Practice 40 (ICRAF, 2001).

  • Anderson, J. M. & Ingram, J. S. Tropical soil biology and fertility: A handbook of methods. Soil Sci. 157(4), 265 (1994).

    ADS 

    Google Scholar
     

  • Rathore, A. C. et al. Impact of conservation practices on soil quality and ecosystem services under diverse horticulture land use system. Front. For. Glob. Change 6, 1289325. https://doi.org/10.3389/ffgc.2023.1289325 (2023).

    Article 

    Google Scholar
     

  • Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003 (1934).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jackson, M. L. Soil Chemical Analysis (Constable & Co. Ltd., 1962).


    Google Scholar
     

  • Stanford, S. & English, L. Use of the flame photometer in rapid soil tests for K and Ca. Agron. J. 41, 446–447 (1949).

    CAS 

    Google Scholar
     

  • Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006 (1945).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Santhanam, R. A Manual of Freshwater Ecology: An Aspect of Fishery Environment (Daya Books, 1989).


    Google Scholar
     

  • Zhang, Y. & Tian, L. Dynamic changes in moisture content and applicability analysis of a typical litter prediction model in Yunnan province. Peer J. 9, e12206. https://doi.org/10.7717/peerj.12206 (2021).

    Article 

    Google Scholar
     

  • Gates, G. E. Burmese earthworms: An introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans. Am. Philos. Soc. 62(7), 1–326. https://doi.org/10.2307/1006214 (1972).

    Article 

    Google Scholar
     

  • Gates, G. E. Contributions to North American earthworms (Annelida). Tall Timbers Res. Stn. (1972b)

  • Blakemore, R. J. Cosmopolitan Earthworms: An Eco-taxonomic Guide to the Peregrine Species of the World. Robert J. Blakemore (2012).

  • Savigny, J. C. Analyses des travaux de l’Académie Royale des Sciences pendant l’année 1821, partie physique. Cuvier. M. le Baron. G 176–184 (1826).

  • Singh, S., Sharma, A., Khajuria, K., Singh, J. & Vig, A. P. BMC Ecol. 20(1), 27. https://doi.org/10.1186/s12898-020-00296-5 (2020).

    Article 

    Google Scholar
     

  • Edwards, C. A. Earthworm Ecology 2nd edn, 441 (CRC Press, 2004).


    Google Scholar
     

  • Regulska, E. & Kołaczkowska, E. The role of habitat heterogenity in the relationships between soil properties and earthworm assembleges: A case study in Pomerania (Northern Poland). Georg. Pol. 89(3), 311–322. https://doi.org/10.7163/GPol.0061 (2016).

    Article 

    Google Scholar
     

  • Migge-Kleian, S., McLean, M. A., Maerz, J. C. & Heneghan, L. The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biol. Invasions 8, 1275–1285. https://doi.org/10.1007/s10530-006-9021-9 (2006).

    Article 

    Google Scholar
     

  • Singh, J., Schädler, M., Demetrio, W., Brown, G. G. & Eisenhauer, N. Climate change effects on earthworms-a review. Soil Org. 91(3), 114. https://doi.org/10.25674/so91iss3pp114 (2019).

    Article 

    Google Scholar
     

  • Singh, J., Cameron, E., Reitz, T., Schädler, M. & Eisenhauer, N. Grassland management effects on earthworm communities under ambient and future climatic conditions. Eur. J. Soil Sci. 72(1), 343–355. https://doi.org/10.1111/ejss.12942 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiménez, J. J. et al. Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia. Biol. Fertil. Soils 28, 101–110. https://doi.org/10.1007/s003740050469 (1998).

    Article 

    Google Scholar
     

  • Myster, R. W., González, G., Huang, C. Y. & Chuang, S. C. Earthworms and post-agricultural succession. In Post-agricultural Succession in the Neotropics 115–138 (Springer, 2008). https://doi.org/10.1007/978-0-387-33642-8_5.

  • Sanchez, E. G., Munoz, B., Garvin, M. H., Jesus, J. B. & Cosin, D. J. D. Ecological preference of some earthworm species in southwest Spain. Soil Biol. Biochem. 29(3–4), 313–316 (1997).

    CAS 

    Google Scholar
     

  • Minhas, R. S., Minhas, H. & Verma, S. D. Soil characterization in relation to forest vegetation in the wet temperate zone of Himachal Pradesh. J. Indian Soc. Soil Sci. 45(1), 146–151 (1997).


    Google Scholar
     

  • Rawat, V., Bagri, A. S., Singh, H., Tiwari, P. & Krishan, J. Altitudinal variation in soil physico-chemical properties of a Western Himalayan Forest Uttarakhand. Indian J. Mt. Res. 16(3), 111–119. https://doi.org/10.51220/jmr.v16i3.11 (2021).

    Article 

    Google Scholar
     

  • Drouin, M., Bradley, R. & Lapointe, L. Linkage between exotic earthworms, understory vegetation and soil properties in sugar maple forests. For. Ecol. Manage. 364, 113–121. https://doi.org/10.1016/j.foreco.2016.01.010 (2016).

    Article 

    Google Scholar
     

  • Cesarz, S., Craven, D., Dietrich, C. & Eisenhauer, N. Effects of soil and leaf litter quality on the biomass of two endogeic earthworm species. Eur. J. Soil Biol. 77, 9–16. https://doi.org/10.1016/j.ejsobi.2016.09.002 (2016).

    Article 

    Google Scholar
     

  • Mohd-Aizat, A., Mohamad-Roslan, M. K., Sulaiman, W. N. A. & Karam, D. S. The relationship between soil pH and selected soil properties in 48 years logged-over forest. Int. J. Environ. Sci. 4(6), 1129–1140. https://doi.org/10.6088/ijes.2014040600004 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Szlávecz, K. & Csuzdi, C. Land use change affects earthworm communities in Eastern Maryland, USA. Eur. J. Soil Biol. 43, S79–S85. https://doi.org/10.1016/j.ejsobi.2007.08.008 (2007).

    Article 

    Google Scholar
     

  • Singh, S., Singh, J. & Vig, A. P. Effect of abiotic factors on the distribution of earthworms in different land use patterns. J. Basic Appl. Zool. 74, 41–50. https://doi.org/10.1016/j.jobaz.2016.06.001 (2016).

    Article 

    Google Scholar
     

  • Mariappan, V., Karthikairaj, K. & Isaiarasu, L. Relationship between earthworm abundance and soil quality of different cultivated lands in Rajapalayam Tamilnadu. World Appl. Sci. J. 27(10), 1278–1281. https://doi.org/10.5829/idosi.wasj.2013.27.10.13738 (2013).

    Article 

    Google Scholar
     

  • Bhadauria, T., Ramakrishnan, P. S. & Srivastava, K. N. Diversity and distribution of endemic and exotic earthworms in natural and regenerating ecosystems in the central Himalayas India. Soil Biol. Biochem. 32(14), 2045–2054. https://doi.org/10.1016/S0038-0717(00)00106-1 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Ramanujam, S. N. & Jha, L. K. Population dynamics of earthworm in relation to soil physicochemical in agroforestry systems of Mizoram India. J. Environ. Biol. 32(5), 599–605 (2011).


    Google Scholar
     

  • Van Vliet, P. C. J., Van der Stelt, B., Rietberg, P. I. & De Goede, R. G. M. Effects of organic matter content on earthworms and nitrogen mineralization in grassland soils. Eur. J. Soil Biol. 43, S222–S229. https://doi.org/10.1016/j.ejsobi.2007.08.052 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Singh, S., Singh, J., Sharma, A., Vig, A. P. & Ahmed, S. First report of the earthworm Pontoscolex corethrurus (Müller, 1857) from Punjab, India. Int. Lett. Nat. Sci. 68, 1–8. https://doi.org/10.18052/www.scipress.com/ILNS.68.1 (2018).

    Article 

    Google Scholar
     

  • Hairiah, K. et al. Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya West Lampung. For. Ecol. Manag. 224(1–2), 45–57. https://doi.org/10.1016/j.foreco.2005.12.007 (2006).

    Article 

    Google Scholar
     

  • Aubert, M. et al. Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France): The 7th international symposium on earthworm ecology Cardiff·Wales·2002. Pedobiologia 47(5–6), 904–912. https://doi.org/10.1078/0031-4056-00279 (2003).

    Article 

    Google Scholar
     

  • Lowman, M. D. & Schowalter, T. D. Plant science in forest canopies–The first 30 years of advances and challenges (1980–2010). New Phytol. 194(1), 12–27. https://doi.org/10.1111/j.1469-8137.2012.04076.x (2012).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Variation in soil respiration under the tree canopy in a temperate mixed forest, central China, under different soil water conditions. Ecol. Res. 29, 133–142. https://doi.org/10.1007/s11284-013-1110-5 (2014).

    Article 

    Google Scholar
     

  • Soro, N. M., Ehouman, N. M., Toure, M. & Tiho, S. Effects of abiotic parameters main of soil on the distribution of earthworms in a tropical moist savanna (Lamto, Central Côte d’Ivoire). Int. J. Biol. Chem. Sci. 13(2), 1027–1042. https://doi.org/10.4314/ijbcs.v13i2.36 (2019).

    Article 

    Google Scholar
     

  • Sheikh, M. A., Kumar, M. & Bussmann, R. W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carb. Balance Manag. 4, 1–6. https://doi.org/10.1186/1750-0680-4-6 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Malla, R. & Neupane, P. R. Spatial distribution of soil organic carbon in the forests of Nepal. Land 13(3), 378. https://doi.org/10.3390/land13030378 (2024).

    Article 

    Google Scholar
     

  • Iordache, M. Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability–A review. Plant Soil Environ. 69(6), 247. https://doi.org/10.17221/461/2022-PSE (2023).

    Article 
    CAS 

    Google Scholar
     

  • Iordache, M. & Borza, I. Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant Soil Environ. 56(9), 401–407. https://doi.org/10.17221/234/2009-PSE (2010).

    Article 
    CAS 

    Google Scholar
     

  • Szlavecz, K. et al. Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development. Oecologia 188, 237–250. https://doi.org/10.1007/s00442-018-4205-4 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Paliwal, R. & Julka, J. M. Earthworm (Oligochaeta). Faunal Divers. Pong Dam Catchment Area Wetl. Ecosyst. Ser. 12, 712 (2009).


    Google Scholar
     

  • James, S. W. & Hendrix, P. F. Invasion of exotic earthworms into North America and other regions. In: Earthworm Ecology 75–88 (CRC Press, 2004).

  • Hendrix, P. F. et al. Pandora’s box contained bait: the global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 39(1), 593–613. https://doi.org/10.1146/annurev.ecolsys.39.110707.173426 (2008).

    Article 

    Google Scholar
     

  • Addison, J. A. Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biol. Invasions 11, 59–79. https://doi.org/10.1007/s10530-008-9320-4 (2009).

    Article 

    Google Scholar
     

  • Paliwal, R. & Julka, J. M. Checklist of earthworms of western Himalaya India. Zoos’ Print J. 20(9), 1972–1976. https://doi.org/10.11609/JoTT.ZPJ.1195.1972-6 (2005).

    Article 

    Google Scholar
     

  • Julka, J. M. Diversity and distribution of exotic earthworms (Annelida, Oligochaeta) in India a review. Biology and Ecology of Tropical Earthworms 73–83 (Discovery Publishing House, 2014).

  • Pandit, M. K., Manish, K. & Koh, L. P. Dancing on the roof of the world: Ecological transformation of the Himalayan landscape. Bioscience 64(11), 980–992. https://doi.org/10.1093/biosci/biu152 (2014).

    Article 

    Google Scholar
     

  • Julka, J. M. fauna of India and the adjacent countries. In Megadrile Oligochaeta (Earthworms) Haplotaxida: Lumbricina: Megascolecoidea: Octochaetidae 400 (Zoological Survey of India, 1988).

  • Terhivuo, J. & Saura, A. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol. Invasions Belowground Earthworms Invasive Species. https://doi.org/10.1007/s10530-006-9015-7 (2006).

    Article 

    Google Scholar
     

  • Hale, C. M., Frelich, L. E., Reich, P. B. & Pastor, J. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA. Ecosystem 8, 911–927. https://doi.org/10.1007/s10021-005-0066-x (2005).

    Article 
    CAS 

    Google Scholar
     

  • McLean, M. A., Migge-Kleian, S. & Parkinson, D. J. B. I. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biol. Invasions 8, 1257–1273. https://doi.org/10.1007/978-1-4020-5429-7_7 (2006).

    Article 

    Google Scholar
     

  • Frelich, L. E., Hale, C. M., Scheu, S., Holdsworth, A. R., Heneghan, L., Bohlen, P. J. & Reich, P. B. Earthworm invasion into previously earthworm-free temperate and boreal forests. In Biological Invasions Belowground: Earthworms as Invasive Species 35-45 https://doi.org/10.1007/s10530-006-9019-3 (2006).

  • Filley, T. R. et al. Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2007JG000542 (2008).

    Article 

    Google Scholar
     

  • Szlavecz, K. et al. Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biol. Invasions https://doi.org/10.1007/s10530-011-9959-0 (2011).

    Article 

    Google Scholar
     

  • Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58. https://doi.org/10.1016/j.soilbio.2015.03.025 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chang, C. H. et al. Belowground competition among invading detritivores. Ecology 97(1), 160–170. https://doi.org/10.1890/15-0551.1 (2016).

    Article 

    Google Scholar
     

  • Chang, C. H., Szlavecz, K. & Buyer, J. S. Amynthas agrestis invasion increases microbial biomass in Mid-Atlantic deciduous forests. Soil Biol. Biochem. 114, 189–199. https://doi.org/10.1016/j.soilbio.2017.07.018 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hale, C. M., Frelich, L. E. & Reich, P. B. Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 87(7), 1637–1649. https://doi.org/10.1890/0012-9658(2006)87[1637:CIHFUP]2.0.CO;2 (2006).

    Article 

    Google Scholar
     

  • Dobson, A. & Blossey, B. Earthworm invasion, white-tailed deer and seedling establishment in deciduous forests of north-eastern North America. J. Ecol. 103(1), 153–164. https://doi.org/10.1111/1365-2745.12350 (2015).

    Article 

    Google Scholar
     

  • Ferlian, O., Cesarz, S., Marhan, S. & Scheu, S. Carbon food resources of earthworms of different ecological groups as indicated by 13C compound-specific stable isotope analysis. Soil Biol. Biochem. 77, 22–30. https://doi.org/10.1016/j.soilbio.2014.06.002 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bora, S., Melkani, D. C., Arya, M., Bisht, S. S. & Reynolds, J. W. Laboratory observations on incubation and hatching pattern of the cocoons of the earthworm Octolasion tyrtaeum. Megadrilogica 28(4) (2011).

  • Snyder, B. A., Callaham, M. A. Jr., Lowe, C. N. & Hendrix, P. F. Earthworm invasion in North America: Food resource competition affects native millipede survival and invasive earthworm reproduction. Soil Biol. Biochem. 57, 212–216. https://doi.org/10.1016/j.soilbio.2012.08.022 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. https://doi.org/10.1097/SS.0000000000000155 (2016).

    Article 

    Google Scholar
     

  • Yang, P. & van Elsas, J. D. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil. Ecol. 129, 112–120. https://doi.org/10.1016/j.apsoil.2018.04.014 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rathore, P., Roy, A. & Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in Southeast Asia. Ecol. Ind. 102, 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020 (2019).

    Article 

    Google Scholar
     

  • Thakur, A. & Kanwal, K. S. Assessing the global distribution and conservation status of the Taxus genus: An overview. Trees For. People 15, 100501. https://doi.org/10.1016/j.tfp.2024.100501 (2024).

    Article 

    Google Scholar
     

  • Cassin, C. M. & Kotanen, P. M. Invasive earthworms as seed predators of temperate forest plants. Biol. Invasions 18, 1567–1580. https://doi.org/10.1007/s10530-016-1101-x (2016).

    Article 

    Google Scholar
     

  • Eisenhauer, N. et al. Earthworm and belowground competition effects on plant productivity in a plant diversity gradient. Oecologia 161, 291–301. https://doi.org/10.1007/s00442-009-1374-1 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Corio, K., Wolf, A., Draney, M. & Fewless, G. Exotic earthworms of great lakes forests: a search for indicator plant species in maple forests. For. Ecol. Manage. 258(7), 1059–1066. https://doi.org/10.1016/j.foreco.2009.05.013 (2009).

    Article 

    Google Scholar
     

  • Sharma, N., Tapwal, A. & Kumar, D. Community composition of aboveground ectomycorrhizal fungi in the dripline area of Taxus contorta Griff. in mixed coniferous forests of Northwest Himalaya. Community Ecol. 14, 1–13 (2025).


    Google Scholar
     

  • Thouvenot, L. et al. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. IScience 27(3), 109036 (2024).

    ADS 

    Google Scholar
     



  • Source link

    More From Forest Beat

    ‘Darkening’ cities is as important for wildlife as greening them

    For billions of years, life has depended on Earth’s rhythm of day and night. DNA codifies body clocks in...
    Biodiversity
    4
    minutes

    The giant cuttlefish’s technicolour mating display is globally unique. The SA...

    Every year off the South Australian coast, giant Australian cuttlefish come together in huge numbers to breed. They put...
    Biodiversity
    3
    minutes

    Unlocking the African bioeconomy and strengthening biodiversity conservation through genomics and...

    Ebenezer, T. E. et al. Africa: sequence 100,000 species to safeguard biodiversity. Nature 603, 388–392 (2022).CAS  ...
    Biodiversity
    19
    minutes

    Cryptobenthic crab assemblages are more distinct across a 90 m depth gradient...

    Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013). ...
    Biodiversity
    13
    minutes
    spot_imgspot_img