Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A. & Brook, B. W. Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers. Conserv. 16, 153–163. https://doi.org/10.1007/s10531-006-9038-5 (2007).
Schlickhoff, U. Man’s impact on vegetation and landscape in the Kaghan valley Pakistan. Pak. J. For. 43, 128–148 (1993).
Knudsen, A. J. Deforestation and entrepreneurship in NWFP, Pakistan. Chr. Michelsen. Ins. Fantoft 38 (1994).
Samant, S. S. Diversity, nativity and endemism of vascular plants in a part of Nanda Devi biosphere reserve in west Himalaya I. Himal. Biosph. Reserve (Biannu. Bull.) 1(1&2), 1–28 (1999).
Thomas, P. & Farjon, A. Taxus wallichiana. IUCN Red List Threat. Species 2011–2012 (2011).
Philip, T. A review of the distribution and conservation status of Taxus in the Himalayas, China and Southeast Asia. III Jorna. Int. Sobre el Tejo (Taxus baccata L.) https://doi.org/10.5261/2011.ESP2.04 (2011).
Lavelle, P. & Spain, A. V. Soil Ecology (Kluwer Scientific Publications, 2001).
Lavelle, P. et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33(4), 159–193. https://doi.org/10.4236/as.2014.514160 (1997).
Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64(2), 161–182. https://doi.org/10.1111/ejss.12025 (2013).
Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M. & Bottinelli, N. Let earthworms be functional-definition of new functional groups based on their bioturbation behavior. Soil Biol. Biochem. 188, 109209. https://doi.org/10.1016/j.soilbio.2023.109209 (2024).
Kanianska, R., Jaďuďová, J., Makovníková, J. & Kizeková, M. Assessment of relationships between earthworms and soil abiotic and biotic factors as a tool in sustainable agricultural. Sustainability 8(9), 906. https://doi.org/10.3390/su8090906 (2016).
Singh, K., Julka, J. M., Yadav, S. & Reynolds, J. W. Drilosphere’s relevance for the functioning of the agroecosystem: A review. Megadrilogica 28(7) (2024).
Misirlioğlu, M. et al. Earthworms (Clitellata, Megadrili) of the world: An updated checklist of valid species and families, with notes on their distribution. Zootaxa 5255(1), 417–438. https://doi.org/10.11646/zootaxa.5255.1.33 (2023).
Bohlen, P. J., Pelletier, D. M., Groffman, P. M., Fahey, T. J. & Fisk, M. C. Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystem 7, 13–27. https://doi.org/10.1007/s10021-003-0127-y (2004).
Craven, D. et al. The unseen invaders: Introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis). Glob. Chang. Biol. 23(3), 1065–1074. https://doi.org/10.1111/gcb.13446 (2017).
Ahmed, S. & Julka, J. M. Annelida: Clitellata: Megadrili (Earthworms). Fauna Himachal Pradesh, State Fauna Ser. 26, 57–70 (2021).
Sharma, A., Ahmed, S. & Julka, J. M. A survey of earthworm diversity in different land use types in mid hills of northwest Himalayas India. Megadrilogica 24(11), 137–142 (2019).
Ahmed, S., Julka, J. M. & Kumar, H. Earthworms (Annelida: Clitellata: Megadrili) of Solan, a constituent of Himalayan biodiversity hotspot, India. Travaux du Museum Natl. d’Histoire Naturelle Grigore Antipa 63(1), 19–50. https://doi.org/10.3897/travaux.63.e49099 (2020).
Gudeta, K. et al. Impact of aboveground vegetation on abundance, diversity, and biomass of earthworms in selected land use systems as a model of synchrony between aboveground and belowground habitats in mid-Himalaya India. Soil Syst. 6(4), 76. https://doi.org/10.3390/soilsystems6040076 (2022).
Ahmed, S., Marimuthu, N., Tripathy, B., Julka, J. M. & Chandra, K. Earthworm community structure and diversity in different land-use systems along an elevation gradient in the Western Himalaya, India. Appl. Soil Ecol. 176, 104468. https://doi.org/10.1016/j.apsoil.2022.104468 (2022).
Ferlian, O. et al. Invasive earthworms erode soil biodiversity: A meta-analysis. J. Anim. Ecol. 87, 162–172. https://doi.org/10.1111/1365-2656.12746 (2018).
Eisenhauer, N., Partsch, S., Parkinson, D. & Scheu, S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol. Biochem. 39(5), 1099–1110. https://doi.org/10.1016/j.soilbio.2006.12.019 (2007).
Straube, D., Johnson, E. A., Parkinson, D., Scheu, S. & Eisenhauer, N. Nonlinearity of effects of invasive ecosystem engineers on abiotic soil properties and soil biota. Oikos 118(6), 885–896. https://doi.org/10.1111/j.1600-0706.2009.17405.x (2009).
Julka, J. M. & Paliwal, R. Distribution of earthworms in different agro-climatic region of India. In Soil Biodiversity, Ecological Processes and Landscape 3–13 (Oxford and ABH Publications Co. Pvt., 2005).
Pandey, R. et al. Vegetation characteristics based climate change vulnerability assessment of temperate forests of Western Himalaya. Forests 13(6), 848. https://doi.org/10.3390/f13060848 (2022).
Negi, V., Bhardwaj, D. R., Sharma, P. & Pala, N. A. Tree species composition and diversity in natural temperate forests of the North-Western Himalayas. Acta. Ecol. Sin. 42(6), 653–660. https://doi.org/10.1016/j.chnaes.2021.09.014 (2022).
FAO and UNEP. The State of the World’s Forests: Forests, Biodiversity and People (2020).
Ahmed, S. Diversity and distribution of earthworms with special reference to their population dynamics in selected land use systems along an altitude gradient in mid Himalaya. Thesis, 1–244. https://shodhganga.inflibnet.ac.in/handle/10603/262495 (2018).
Swift, M. & Bignell, D. Standard Methods for Assessment of Soil Biodiversity and Land Use Practice 40 (ICRAF, 2001).
Anderson, J. M. & Ingram, J. S. Tropical soil biology and fertility: A handbook of methods. Soil Sci. 157(4), 265 (1994).
Rathore, A. C. et al. Impact of conservation practices on soil quality and ecosystem services under diverse horticulture land use system. Front. For. Glob. Change 6, 1289325. https://doi.org/10.3389/ffgc.2023.1289325 (2023).
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003 (1934).
Jackson, M. L. Soil Chemical Analysis (Constable & Co. Ltd., 1962).
Stanford, S. & English, L. Use of the flame photometer in rapid soil tests for K and Ca. Agron. J. 41, 446–447 (1949).
Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59(1), 39–46. https://doi.org/10.1097/00010694-194501000-00006 (1945).
Santhanam, R. A Manual of Freshwater Ecology: An Aspect of Fishery Environment (Daya Books, 1989).
Zhang, Y. & Tian, L. Dynamic changes in moisture content and applicability analysis of a typical litter prediction model in Yunnan province. Peer J. 9, e12206. https://doi.org/10.7717/peerj.12206 (2021).
Gates, G. E. Burmese earthworms: An introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans. Am. Philos. Soc. 62(7), 1–326. https://doi.org/10.2307/1006214 (1972).
Gates, G. E. Contributions to North American earthworms (Annelida). Tall Timbers Res. Stn. (1972b)
Blakemore, R. J. Cosmopolitan Earthworms: An Eco-taxonomic Guide to the Peregrine Species of the World. Robert J. Blakemore (2012).
Savigny, J. C. Analyses des travaux de l’Académie Royale des Sciences pendant l’année 1821, partie physique. Cuvier. M. le Baron. G 176–184 (1826).
Singh, S., Sharma, A., Khajuria, K., Singh, J. & Vig, A. P. BMC Ecol. 20(1), 27. https://doi.org/10.1186/s12898-020-00296-5 (2020).
Edwards, C. A. Earthworm Ecology 2nd edn, 441 (CRC Press, 2004).
Regulska, E. & Kołaczkowska, E. The role of habitat heterogenity in the relationships between soil properties and earthworm assembleges: A case study in Pomerania (Northern Poland). Georg. Pol. 89(3), 311–322. https://doi.org/10.7163/GPol.0061 (2016).
Migge-Kleian, S., McLean, M. A., Maerz, J. C. & Heneghan, L. The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biol. Invasions 8, 1275–1285. https://doi.org/10.1007/s10530-006-9021-9 (2006).
Singh, J., Schädler, M., Demetrio, W., Brown, G. G. & Eisenhauer, N. Climate change effects on earthworms-a review. Soil Org. 91(3), 114. https://doi.org/10.25674/so91iss3pp114 (2019).
Singh, J., Cameron, E., Reitz, T., Schädler, M. & Eisenhauer, N. Grassland management effects on earthworm communities under ambient and future climatic conditions. Eur. J. Soil Sci. 72(1), 343–355. https://doi.org/10.1111/ejss.12942 (2021).
Jiménez, J. J. et al. Earthworm communities in native savannas and man-made pastures of the Eastern Plains of Colombia. Biol. Fertil. Soils 28, 101–110. https://doi.org/10.1007/s003740050469 (1998).
Myster, R. W., González, G., Huang, C. Y. & Chuang, S. C. Earthworms and post-agricultural succession. In Post-agricultural Succession in the Neotropics 115–138 (Springer, 2008). https://doi.org/10.1007/978-0-387-33642-8_5.
Sanchez, E. G., Munoz, B., Garvin, M. H., Jesus, J. B. & Cosin, D. J. D. Ecological preference of some earthworm species in southwest Spain. Soil Biol. Biochem. 29(3–4), 313–316 (1997).
Minhas, R. S., Minhas, H. & Verma, S. D. Soil characterization in relation to forest vegetation in the wet temperate zone of Himachal Pradesh. J. Indian Soc. Soil Sci. 45(1), 146–151 (1997).
Rawat, V., Bagri, A. S., Singh, H., Tiwari, P. & Krishan, J. Altitudinal variation in soil physico-chemical properties of a Western Himalayan Forest Uttarakhand. Indian J. Mt. Res. 16(3), 111–119. https://doi.org/10.51220/jmr.v16i3.11 (2021).
Drouin, M., Bradley, R. & Lapointe, L. Linkage between exotic earthworms, understory vegetation and soil properties in sugar maple forests. For. Ecol. Manage. 364, 113–121. https://doi.org/10.1016/j.foreco.2016.01.010 (2016).
Cesarz, S., Craven, D., Dietrich, C. & Eisenhauer, N. Effects of soil and leaf litter quality on the biomass of two endogeic earthworm species. Eur. J. Soil Biol. 77, 9–16. https://doi.org/10.1016/j.ejsobi.2016.09.002 (2016).
Mohd-Aizat, A., Mohamad-Roslan, M. K., Sulaiman, W. N. A. & Karam, D. S. The relationship between soil pH and selected soil properties in 48 years logged-over forest. Int. J. Environ. Sci. 4(6), 1129–1140. https://doi.org/10.6088/ijes.2014040600004 (2014).
Szlávecz, K. & Csuzdi, C. Land use change affects earthworm communities in Eastern Maryland, USA. Eur. J. Soil Biol. 43, S79–S85. https://doi.org/10.1016/j.ejsobi.2007.08.008 (2007).
Singh, S., Singh, J. & Vig, A. P. Effect of abiotic factors on the distribution of earthworms in different land use patterns. J. Basic Appl. Zool. 74, 41–50. https://doi.org/10.1016/j.jobaz.2016.06.001 (2016).
Mariappan, V., Karthikairaj, K. & Isaiarasu, L. Relationship between earthworm abundance and soil quality of different cultivated lands in Rajapalayam Tamilnadu. World Appl. Sci. J. 27(10), 1278–1281. https://doi.org/10.5829/idosi.wasj.2013.27.10.13738 (2013).
Bhadauria, T., Ramakrishnan, P. S. & Srivastava, K. N. Diversity and distribution of endemic and exotic earthworms in natural and regenerating ecosystems in the central Himalayas India. Soil Biol. Biochem. 32(14), 2045–2054. https://doi.org/10.1016/S0038-0717(00)00106-1 (2000).
Ramanujam, S. N. & Jha, L. K. Population dynamics of earthworm in relation to soil physicochemical in agroforestry systems of Mizoram India. J. Environ. Biol. 32(5), 599–605 (2011).
Van Vliet, P. C. J., Van der Stelt, B., Rietberg, P. I. & De Goede, R. G. M. Effects of organic matter content on earthworms and nitrogen mineralization in grassland soils. Eur. J. Soil Biol. 43, S222–S229. https://doi.org/10.1016/j.ejsobi.2007.08.052 (2007).
Singh, S., Singh, J., Sharma, A., Vig, A. P. & Ahmed, S. First report of the earthworm Pontoscolex corethrurus (Müller, 1857) from Punjab, India. Int. Lett. Nat. Sci. 68, 1–8. https://doi.org/10.18052/www.scipress.com/ILNS.68.1 (2018).
Hairiah, K. et al. Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya West Lampung. For. Ecol. Manag. 224(1–2), 45–57. https://doi.org/10.1016/j.foreco.2005.12.007 (2006).
Aubert, M. et al. Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France): The 7th international symposium on earthworm ecology Cardiff·Wales·2002. Pedobiologia 47(5–6), 904–912. https://doi.org/10.1078/0031-4056-00279 (2003).
Lowman, M. D. & Schowalter, T. D. Plant science in forest canopies–The first 30 years of advances and challenges (1980–2010). New Phytol. 194(1), 12–27. https://doi.org/10.1111/j.1469-8137.2012.04076.x (2012).
Liu, Y. et al. Variation in soil respiration under the tree canopy in a temperate mixed forest, central China, under different soil water conditions. Ecol. Res. 29, 133–142. https://doi.org/10.1007/s11284-013-1110-5 (2014).
Soro, N. M., Ehouman, N. M., Toure, M. & Tiho, S. Effects of abiotic parameters main of soil on the distribution of earthworms in a tropical moist savanna (Lamto, Central Côte d’Ivoire). Int. J. Biol. Chem. Sci. 13(2), 1027–1042. https://doi.org/10.4314/ijbcs.v13i2.36 (2019).
Sheikh, M. A., Kumar, M. & Bussmann, R. W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carb. Balance Manag. 4, 1–6. https://doi.org/10.1186/1750-0680-4-6 (2009).
Malla, R. & Neupane, P. R. Spatial distribution of soil organic carbon in the forests of Nepal. Land 13(3), 378. https://doi.org/10.3390/land13030378 (2024).
Iordache, M. Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability–A review. Plant Soil Environ. 69(6), 247. https://doi.org/10.17221/461/2022-PSE (2023).
Iordache, M. & Borza, I. Relation between chemical indices of soil and earthworm abundance under chemical fertilization. Plant Soil Environ. 56(9), 401–407. https://doi.org/10.17221/234/2009-PSE (2010).
Szlavecz, K. et al. Litter quality, dispersal and invasion drive earthworm community dynamics and forest soil development. Oecologia 188, 237–250. https://doi.org/10.1007/s00442-018-4205-4 (2018).
Paliwal, R. & Julka, J. M. Earthworm (Oligochaeta). Faunal Divers. Pong Dam Catchment Area Wetl. Ecosyst. Ser. 12, 712 (2009).
James, S. W. & Hendrix, P. F. Invasion of exotic earthworms into North America and other regions. In: Earthworm Ecology 75–88 (CRC Press, 2004).
Hendrix, P. F. et al. Pandora’s box contained bait: the global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 39(1), 593–613. https://doi.org/10.1146/annurev.ecolsys.39.110707.173426 (2008).
Addison, J. A. Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biol. Invasions 11, 59–79. https://doi.org/10.1007/s10530-008-9320-4 (2009).
Paliwal, R. & Julka, J. M. Checklist of earthworms of western Himalaya India. Zoos’ Print J. 20(9), 1972–1976. https://doi.org/10.11609/JoTT.ZPJ.1195.1972-6 (2005).
Julka, J. M. Diversity and distribution of exotic earthworms (Annelida, Oligochaeta) in India a review. Biology and Ecology of Tropical Earthworms 73–83 (Discovery Publishing House, 2014).
Pandit, M. K., Manish, K. & Koh, L. P. Dancing on the roof of the world: Ecological transformation of the Himalayan landscape. Bioscience 64(11), 980–992. https://doi.org/10.1093/biosci/biu152 (2014).
Julka, J. M. fauna of India and the adjacent countries. In Megadrile Oligochaeta (Earthworms) Haplotaxida: Lumbricina: Megascolecoidea: Octochaetidae 400 (Zoological Survey of India, 1988).
Terhivuo, J. & Saura, A. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol. Invasions Belowground Earthworms Invasive Species. https://doi.org/10.1007/s10530-006-9015-7 (2006).
Hale, C. M., Frelich, L. E., Reich, P. B. & Pastor, J. Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA. Ecosystem 8, 911–927. https://doi.org/10.1007/s10021-005-0066-x (2005).
McLean, M. A., Migge-Kleian, S. & Parkinson, D. J. B. I. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biol. Invasions 8, 1257–1273. https://doi.org/10.1007/978-1-4020-5429-7_7 (2006).
Frelich, L. E., Hale, C. M., Scheu, S., Holdsworth, A. R., Heneghan, L., Bohlen, P. J. & Reich, P. B. Earthworm invasion into previously earthworm-free temperate and boreal forests. In Biological Invasions Belowground: Earthworms as Invasive Species 35-45 https://doi.org/10.1007/s10530-006-9019-3 (2006).
Filley, T. R. et al. Comparison of the chemical alteration trajectory of Liriodendron tulipifera L. leaf litter among forests with different earthworm abundance. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2007JG000542 (2008).
Szlavecz, K. et al. Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests. Biol. Invasions https://doi.org/10.1007/s10530-011-9959-0 (2011).
Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58. https://doi.org/10.1016/j.soilbio.2015.03.025 (2015).
Chang, C. H. et al. Belowground competition among invading detritivores. Ecology 97(1), 160–170. https://doi.org/10.1890/15-0551.1 (2016).
Chang, C. H., Szlavecz, K. & Buyer, J. S. Amynthas agrestis invasion increases microbial biomass in Mid-Atlantic deciduous forests. Soil Biol. Biochem. 114, 189–199. https://doi.org/10.1016/j.soilbio.2017.07.018 (2017).
Hale, C. M., Frelich, L. E. & Reich, P. B. Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 87(7), 1637–1649. https://doi.org/10.1890/0012-9658(2006)87[1637:CIHFUP]2.0.CO;2 (2006).
Dobson, A. & Blossey, B. Earthworm invasion, white-tailed deer and seedling establishment in deciduous forests of north-eastern North America. J. Ecol. 103(1), 153–164. https://doi.org/10.1111/1365-2745.12350 (2015).
Ferlian, O., Cesarz, S., Marhan, S. & Scheu, S. Carbon food resources of earthworms of different ecological groups as indicated by 13C compound-specific stable isotope analysis. Soil Biol. Biochem. 77, 22–30. https://doi.org/10.1016/j.soilbio.2014.06.002 (2014).
Bora, S., Melkani, D. C., Arya, M., Bisht, S. S. & Reynolds, J. W. Laboratory observations on incubation and hatching pattern of the cocoons of the earthworm Octolasion tyrtaeum. Megadrilogica 28(4) (2011).
Snyder, B. A., Callaham, M. A. Jr., Lowe, C. N. & Hendrix, P. F. Earthworm invasion in North America: Food resource competition affects native millipede survival and invasive earthworm reproduction. Soil Biol. Biochem. 57, 212–216. https://doi.org/10.1016/j.soilbio.2012.08.022 (2013).
Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. https://doi.org/10.1097/SS.0000000000000155 (2016).
Yang, P. & van Elsas, J. D. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil. Ecol. 129, 112–120. https://doi.org/10.1016/j.apsoil.2018.04.014 (2018).
Rathore, P., Roy, A. & Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in Southeast Asia. Ecol. Ind. 102, 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020 (2019).
Thakur, A. & Kanwal, K. S. Assessing the global distribution and conservation status of the Taxus genus: An overview. Trees For. People 15, 100501. https://doi.org/10.1016/j.tfp.2024.100501 (2024).
Cassin, C. M. & Kotanen, P. M. Invasive earthworms as seed predators of temperate forest plants. Biol. Invasions 18, 1567–1580. https://doi.org/10.1007/s10530-016-1101-x (2016).
Eisenhauer, N. et al. Earthworm and belowground competition effects on plant productivity in a plant diversity gradient. Oecologia 161, 291–301. https://doi.org/10.1007/s00442-009-1374-1 (2009).
Corio, K., Wolf, A., Draney, M. & Fewless, G. Exotic earthworms of great lakes forests: a search for indicator plant species in maple forests. For. Ecol. Manage. 258(7), 1059–1066. https://doi.org/10.1016/j.foreco.2009.05.013 (2009).
Sharma, N., Tapwal, A. & Kumar, D. Community composition of aboveground ectomycorrhizal fungi in the dripline area of Taxus contorta Griff. in mixed coniferous forests of Northwest Himalaya. Community Ecol. 14, 1–13 (2025).
Thouvenot, L. et al. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. IScience 27(3), 109036 (2024).