Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).
Kehoe, R., Frago, E. & Sanders, D. Cascading extinctions as a hidden driver of insect decline. Ecol. Entomol. 46, 743–756 (2021).
Pearse, I. S. & Altermatt, F. Extinction cascades partially estimate herbivore losses in a complete Lepidoptera-plant food web. Ecology 94, 1785–1794 (2013).
Strona, G. & Bradshaw, C. J. A. Coextinctions dominate future vertebrate losses from climate and land use change. Sci. Adv. 8, eabn4345 (2022).
Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).
Barnes, A. D. et al. Energy Flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).
Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
Gozlan, R. E., Karimov, B. K., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).
Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).
Gimmi, U., Lachat, T. & Bürgi, M. Reconstructing the collapse of wetland networks in the Swiss lowlands 1850-2000. Landsc. Ecol. 26, 1071–1083 (2011).
Sandor, M. E., Elphick, C. S. & Tingley, M. W. Extinction of biotic interactions due to habitat loss could accelerate the current biodiversity crisis. Ecol. Appl. 32, e2608 (2022).
Zhang, H. et al. A spatial fingerprint of land-water linkage of biodiversity uncovered by remote sensing and environmental DNA. Sci. Total Environ. 867, 161365 (2023).
Devoto, M., Bailey, S. & Memmott, J. Ecological meta-networks integrate spatial and temporal dynamics of plant–bumble bee interactions. Oikos 123, 714–720 (2014).
Schneider, G., Krauss, J., Boetzl, F. A., Fritze, M.-A. & Steffan-Dewenter, I. Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia 182, 1141–1150 (2016).
Frost, C. M., Didham, R. K., Rand, T. A., Peralta, G. & Tylianakis, J. M. Community-level net spillover of natural enemies from managed to natural forest. Ecology 96, 193–202 (2015).
Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
Breviglieri, C. P. B. & Romero, G. Q. Terrestrial vertebrate predators drive the structure and functioning of aquatic food webs. Ecology 98, 2069–2080 (2017).
Pace, M. L., Cole, J. J., Carpenter, S. R. & Kitchell, J. F. Trophic cascades revealed in diverse ecosystems. Trends Ecol. Evol. 14, 483–488 (1999).
Sahasrabudhe, S. & Motter, A. E. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nat. Commun. 2, 170 (2011).
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).
Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002).
Landi, P., Minoarivelo, H. O., Brännström, Å, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, (2017).
Gaichas, S. K. & Francis, R. C. Network models for ecosystem-based fishery analysis: a review of concepts and application to the Gulf of Alaska marine food web. Can. J. Fish. Aquat. Sci. 65, 1965–1982 (2008).
Solé, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 268, 2039–2045 (2001).
Rodriguez, I. D. & Saravia, L. A. Potter Cove’s Heavyweights: Estimation of Species’ Interaction Strength of an Antarctic Food Web. Ecol. Evol. 14, e70389 (2024).
Piraveenan, M., Thedchanamoorthy, G., Uddin, S. & Chung, K. S. K. Quantifying topological robustness of networks under sustained targeted attacks. Soc. Netw. Anal. Min. 3, 939–952 (2013).
Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998).
Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B Biol. Sci. 267, 1947–1952 (2000).
IŞIK, K. Rare and endemic species: why are they prone to extinction?. Turk. J. Bot. 35, 411–417 (2011).
Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B Biol. Sci. 283, 20160084 (2016).
Basile, M. Rare species disproportionally contribute to functional diversity in managed forests. Sci. Rep. 12, 5897 (2022).
Ho, H.-C. & Altermatt, F. Associating the structure of Lepidoptera-plant interaction networks across clades and life stages to environmental gradients. J. Biogeogr. 51, 725–738 (2024).
Burner, R. C. et al. Functional structure of European forest beetle communities is enhanced by rare species. Biol. Conserv. 267, 109491 (2022).
Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
Chapman, A. S. A., Tunnicliffe, V. & Bates, A. E. Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Divers. Distrib. 24, 568–578 (2018).
Bellingeri, M., Cassi, D. & Vincenzi, S. Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs. Ecol. Model. 251, 1–8 (2013).
McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).
Gaston, K. J. & Fuller, R. A. Biodiversity and extinction: losing the common and the widespread. Prog. Phys. Geogr. Earth Environ. 31, 213–225 (2007).
Dunne, J. A. The network structure of food webs. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J.) 25–76 (Oxford University Press, Oxford, 2006).
Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M. & Momo, F. R. Ecological network assembly: How the regional metaweb influences local food webs. J. Anim. Ecol. 91, 630–642 (2022).
O’Connor, L. M. J. et al. Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. J. Biogeogr. 47, 181–192 (2020).
Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).
Reji Chacko, M. et al. trophiCH – a food web for Switzerland. EnviDat https://doi.org/10.16904/ENVIDAT.467 (2024).
Statistisches Jahrbuch der Schweiz 1997. (NZZ Libro (NZZ_BUCHV), 1996).
Gonseth, Y., Klingl, T. & Nöthiger-Koch, U. Die Biogeographischen Regionen Der Schweiz: Erläuterungen Und Einteilungsstandard = Les Régions Biogéographiques de La Suisse: Explications et Division Standard. (Bezugsquelle: BUWAL, Dokumentation, Bern, 2001).
BAFU. Artenvielfalt in der Schweiz. Bundesamt für Umwelt BAFU https://www.bafu.admin.ch/bafu/de/home/themen/biodiversitaet/zustand-der-biodiversitaet-in-der-schweiz/zustand-der-artenvielfalt-in-der-schweiz.html (2023).
CSCF. info fauna | Data Server. info fauna Nationales Daten- und Informationszentrum der Schweizer Fauna https://lepus.infofauna.ch/tab/ (2017).
Reji Chacko, M. et al. A species-level multi-trophic metaweb for Switzerland. Sci. Data https://doi.org/10.1038/s41597-025-05487-7 (2025).
Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. TETRA-EU 1.0: A species-level trophic metaweb of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).
Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).
Landolt, E. et al. Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt Bern. 7, 378 (2010).
BAFU. Biogeographical regions of Switzerland (CH). (2022).
Chauvier, Y. et al. Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. EnviDat https://doi.org/10.16904/envidat.334 (2022).
Külling, N. & Adde, A. SWECO25: Topographic (topo). Zenodo https://doi.org/10.5281/zenodo.7973960 (2023).
Delarze, R., Gonseth, Y., Eggenberg, S. & Vust, M. Lebensräume Der Schweiz: Ökologie – Gefährdung – Kennarten. (Ott-Verlag, Thun, 2015).
Price, B., Huber, N., Ginzler, C., Pazúr, R. & Rüetschi, M. The Habitat Map of Switzerland v1. Envidat https://doi.org/10.16904/envidat.262 (2021).
Gillies, S. Rasterio: geospatial raster I/O for Python programmers. Mapbox (2013).
Jordahl, K. et al. geopandas/geopandas: v0.8.1. Zenodo https://doi.org/10.5281/zenodo.3946761 (2020).
Csárdi, G. et al. igraph: Network Analysis and Visualization in R. https://doi.org/10.5281/zenodo.7682609 (2024).
De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).
Harris et al. Array programming with NumPy. Nature 585, 357–362 (2020).
Hagberg, A., Swart, P. & S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX. (2008).
VanRossum, G., Drake, F. L. Python 3 Reference Manual. CreateSpace: Scotts Valley, CA, 2009.
RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC. (2020).
Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. (2017).
Torchiano, M. effsize: Efficient Effect Size Computation. https://doi.org/10.5281/zenodo.1480624 (2020).
Shipley, J. R. et al. Agricultural practices and biodiversity: Conservation policies for semi-natural grasslands in Europe. Curr. Biol. 34, R753–R761 (2024).
Habel, J. C. et al. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22, 2131–2138 (2013).
Brändli, U. B., Abegg, M. & Düggelin, C. Biologische Vielfalt. in Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009–2017. 189–237 (Swiss Federal Institute for Forest, Snow and Landscape Research, Federal Office for the Environment, Birmensdorf, (2020).
Shipley, J. R., Gossner, M. M., Rigling, A. & Krumm, F. Conserving forest insect biodiversity requires the protection of key habitat features. Trends Ecol. Evol. 38, 788–791 (2023).
Mestre, F. et al. Disentangling food-web environment relationships: A review with guidelines. Basic Appl. Ecol. 61, 102–115 (2022).
May, R. M. Will a Large Complex System be Stable?. Nature 238, 413–414 (1972).
Braga, J. et al. Spatial analyses of multi-trophic terrestrial vertebrate assemblages in Europe. Glob. Ecol. Biogeogr. 28, 1636–1648 (2019).
Shi, F. et al. Spatio-temporal dynamics of landscape connectivity and ecological network construction in Long Yangxia Basin at the Upper Yellow River. Land 9, 265 (2020).
Santos, M. et al. Robustness of a meta-network to alternative habitat loss scenarios. Oikos 130, 133–142 (2021).
Anderson, K. E. & Fahimipour, A. K. Body size dependent dispersal influences stability in heterogeneous metacommunities. Sci. Rep. 11, 17410 (2021).
Schofield, K. A. et al. Biota connect aquatic habitats throughout freshwater ecosystem mosaics. JAWRA J. Am. Water Resour. Assoc. 54, 372–399 (2018).
Flinn, K. M., Lechowicz, M. J. & Waterway, M. J. Plant species diversity and composition of wetlands within an upland forest. Am. J. Bot. 95, 1216–1224 (2008).
Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
Ho, H.-C. et al. Blue and green food webs respond differently to elevation and land use. Nat. Commun. 13, 6415 (2022).
Vitekere, K., Hua, Y. & Jiang, G. Complexity, connectance and link density in continental food webs: dissimilarities in aquatic and terrestrial food webs and their habitats. Appl. Ecol. Environ. Res. 19, 817–831 (2021).
Shipley, J. et al. Consumer biodiversity increases organic nutrient availability across aquatic and terrestrial ecosystems. Science 386, 335–340 (2024).
Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).
McFadden, I. R. et al. Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol. Lett. 26, 203–218 (2023).
Säterberg, T., Jonsson, T., Yearsley, J., Berg, S. & Ebenman, B. A potential role for rare species in ecosystem dynamics. Sci. Rep. 9, 11107 (2019).
Maurer, C., Sutter, L., Martínez-Núñez, C., Pellissier, L. & Albrecht, M. Different types of semi-natural habitat are required to sustain diverse wild bee communities across agricultural landscapes. J. Appl. Ecol. 59, 2604–2615 (2022).
Albrecht, M., Padrón, B., Bartomeus, I. & Traveset, A. Consequences of plant invasions on compartmentalization and species’ roles in plant–pollinator networks. Proc. R. Soc. B Biol. Sci. 281, 20140773 (2014).
Heleno, R. H., Ripple, W. J. & Traveset, A. Scientists’ warning on endangered food webs. Web Ecol. 20, 1–10 (2020).
Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).
Wang, S. et al. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 102, e03332 (2021).
Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).
Rodríguez-Castañeda, G. et al. Tropical forests are not flat: how mountains affect herbivore diversity. Ecol. Lett. 13, 1348–1357 (2010).
Adhurya, S., Agasti, N. & Park, Y. Metaweb and its applications in understanding ecological interactions. Preprint at https://doi.org/10.32942/X2SW3V (2023).
Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Grünig, M., Mazzi, D., Calanca, P., Karger, D. N. & Pellissier, L. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Commun. Biol. 3, (2020).
Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. 115, E2264–E2273 (2018).
Aslan, C. E. Implications of non-native species for mutualistic network resistance and resilience. PLOS ONE 14, e0217498 (2019).
InfoSpecies. Artinformationen, Verbreitungsdaten. InfoSpecies https://www.infospecies.ch/de/neobiota/artinformationen-verbreitungsdaten.html (2021).
Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).
Moorhouse-Gann, R. J., Kean, E. F., Parry, G., Valladares, S. & Chadwick, E. A. Dietary complexity and hidden costs of prey switching in a generalist top predator. Ecol. Evol. 10, 6395–6408 (2020).
Yacine, Y., Allhoff, K. T., Weinbach, A. & Loeuille, N. Collapse and rescue of evolutionary food webs under global warming. J. Anim. Ecol. 90, 710–722 (2021).
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. Biol. Sci. 367, 1628–1646 (2012).
Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narváez, L., Urbani, P. & Dunne, J. A. Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol. Lett. 13, 1546–1559 (2010).
Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).
Ripple, W. J. & Beschta, R. L. Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?. BioScience 54, 755–766 (2004).
Paine, R. T. Food Web Complexity and Species Diversity. Am. Nat. 100, 65–75 (1966).
Ho, H.-C. & Altermatt, F. Predicted community consequences of spatially explicit global change-induced processes on plant–insect networks. Ecol. Evol. 14, e70272 (2024).
Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).
Carroll, C., Noss, R. F., Dreiss, L. M., Hamilton, H. & Stein, B. A. Four challenges to an effective national nature assessment. Conserv. Biol. 37, e14075 (2023).
Külling, N. et al. Nature’s contributions to people and biodiversity mapping in Switzerland: spatial patterns and environmental drivers. Ecol. Indic. 163, 112079 (2024).
Jackson, S. T. et al. Toward a national, sustained US ecosystem assessment. Science 354, 838–839 (2016).
Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).
Adde, A. et al. Projecting Untruncated Climate Change Effects on Species’ Climate Suitability: Insights From an Alpine Country. Glob. Change Biol. 30, e17557 (2024).
Dallimer, M. & Strange, N. Why socio-political borders and boundaries matter in conservation. Trends Ecol. Evol. 30, 132–139 (2015).
Reji Chacko, M. et al. Simulation data and analyses of regional food web robustness under habitat loss. EnviDat https://doi.org/10.16904/envidat.642 (2025).