Species richness is an important mediator of multifunctionality changes in Hobq desert shrub ecosystem


  • Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Global Ecol. Biogeogr. 26, 1423–1434 (2017).


    Google Scholar
     

  • Tariq, A. et al. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New. Phytol. 242, 916–934 (2024).

    PubMed 

    Google Scholar
     

  • Li, Z. et al. Shallow tillage mitigates plant competition by increasing diversity and altering plant community assembly process. Front Plant. Sci 15:1409493(2024).

  • Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. U S A. 94, 1857–1861 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).


    Google Scholar
     

  • Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, P. et al. The essential role of biodiversity in the key axes of ecosystem function. Global Change Biol. 29, 4569–4585 (2023).

    CAS 

    Google Scholar
     

  • Tilman, D. et al. Diversity and productivity in a Long-Term grassland experiment. Science 294, 843–845 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).


    Google Scholar
     

  • D’Andrea, R. et al. Reciprocal Inhibition and competitive hierarchy cause negative biodiversity-ecosystem function relationships. Ecol. Lett. 27, e14356 (2024).

    PubMed 

    Google Scholar
     

  • Karanth, K. P., Gautam, S., Arekar, K. & Divya, B. Phylogenetic diversity as a measure of biodiversity: pros and cons. J. Bombay Nat. Hist. Soc. 116, 53–61 (2019).


    Google Scholar
     

  • Steudel, B. et al. Contrasting biodiversity–ecosystem functioning relationships in phylogenetic and functional diversity. New. Phytol. 212, 409–420 (2016).

    PubMed 

    Google Scholar
     

  • Wang, X. et al. Phylogenetic diversity drives soil multifunctionality in arid montane forest-grassland transition zone. Front. Plant. Sci. 15, 1344948 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and Temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).


    Google Scholar
     

  • Hu, Y. et al. Species diversity is a strong predictor of ecosystem multifunctionality under altered precipitation in desert steppes. Ecol. Indic. 137, 108762 (2022).


    Google Scholar
     

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    PubMed 

    Google Scholar
     

  • Mori, A. S., Isbell, F. & Cadotte, M. W. Assessing the importance of species and their assemblages for the biodiversity-ecosystem multifunctionality relationship. Ecology 104, e4104 (2023).

    PubMed 

    Google Scholar
     

  • Van Der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed 

    Google Scholar
     

  • Zhou, G. et al. Stand Spatial structure and microbial diversity are key drivers of soil multifunctionality during secondary succession in degraded karst forests. Sci. Total Environ. 937, 173504 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Pichon, N. A. et al. Nitrogen availability and plant functional composition modify biodiversity-multifunctionality relationships. Ecol. Lett. 27, e14361 (2024).

    PubMed 

    Google Scholar
     

  • Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. R. et al. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biol. Biochem. 107, 208–217 (2017).

    CAS 

    Google Scholar
     

  • Zheng, J. et al. Biodiversity and soil pH regulate the recovery of ecosystem multifunctionality during secondary succession of abandoned croplands in Northern China. J. Environ. Manage. 327, 116882 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Fu, B., Liu, Y. & Meadows, M. E. Ecological restoration for sustainable development in China. Natl. Sci. Rev. 10, nwad033 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, M., Chen, W. & Wang, H. Ecological policies dominated the ecological restoration over the core regions of Kubuqi desert in recent decades. Remote Sens. 14, 5243 (2022).

    ADS 

    Google Scholar
     

  • Han, Q. et al. Water balance characteristics of the Salix shelterbelt in the Kubuqi desert. Forests 15, 278 (2024).


    Google Scholar
     

  • Chen, P. et al. Ecological restoration intensifies evapotranspiration in the Kubuqi desert. Ecol. Eng. 175, 106504 (2022).


    Google Scholar
     

  • Zhang, L. et al. Effects of grazing disturbance of Spatial distribution pattern and interspecies relationship of two desert shrubs. J. Res. 33, 507–518 (2021).

    ADS 

    Google Scholar
     

  • Jiang, L. M. et al. Different contributions of plant diversity and soil properties to the community stability in the arid desert ecosystem. Front. Plant. Sci. 13, 969852 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. U S A. 116, 8419–8424 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maestre, F. T. & Quero, J. L. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos. T R Soc. B. 367, 3062–3075 (2012).


    Google Scholar
     

  • Liu, C. et al. Drought is threatening plant growth and soil nutrients of grassland ecosystems: A meta-analysis. Ecol. Evol. 13, e10092 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, J. et al. The advantage of afforestation using native tree species to enhance soil quality in degraded forest ecosystems. Sci. Rep. 14, 20022 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, M. J. et al. Soil organic carbon dynamics in the agricultural soils of Bangladesh following more than 20 years of land use intensification. J. Environ. Manage. 305, 114427 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Bogunovic, I., Pereira, P. & Brevik, E. C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ. 584–585, 535–545 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. R v4.3.2. Foundation for Statistical Computing, Vienna, Austria. URL (2023). https://www.R-project.org/

  • Jin, Y. & Qian, H. V. PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant. Divers. 44, 335–339 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S. et al. Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 1, e56 (2022).

  • Zhou, Y. et al. Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount kenya, East Africa. Ecol. Evol. 8, 8930–8939 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).


    Google Scholar
     

  • Goldstein, A. & Pitkin, E. Kapelner,Adam, Bleich, Justinand Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. J. Comput. Graphical Stat. 24, 44–65 (2015).

  • Kline, R. B. Principles and Practice of Structural Equation Modelingvol. 1 (Guilford, 2012).

  • Zhang, S., Chen, Y., Zhou, X. & Zhang, Y. Climate and human impact together drive changes in ecosystem multifunctionality in the drylands of China. Appl. Soil. Ecol. 193, 105163 (2024).


    Google Scholar
     

  • Yang, H. et al. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biol. 17, 2936–2944 (2011).

    ADS 

    Google Scholar
     

  • Zuo, X. et al. Observational and experimental evidence for the effect of altered precipitation on desert and steppe communities. Global Ecol. Conserv. 21, e00864 (2020).


    Google Scholar
     

  • Li, D., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proceedings of the National Academy of Sciences 116, 19989–19994 (2019).

  • Eskelinen, A. & Harrison, S. P. Resource colimitation governs plant community responses to altered precipitation. Proceedings of the National Academy of Sciences 112, 13009–13014 (2015).

  • Zhu, Y. et al. Increased precipitation attenuates shrub encroachment by facilitating herbaceous growth in a Mongolian grassland. Funct. Ecol. 36, 2356–2366 (2022).

    CAS 

    Google Scholar
     

  • Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Spatial variability of soil organic carbon and total nitrogen in desert steppes of china’s Hexi corridor. Front Environ. Sci 9:761313 (2021).

  • Zhu, X. et al. Changes of soil carbon along precipitation gradients in three typical vegetation types in the Alxa desert region, China. Carbon Balance Manage. 19, 19 (2024).

    CAS 

    Google Scholar
     

  • Medina-Roldán, E. et al. Precipitation controls topsoil nutrient buildup in arid and semiarid ecosystems. Agriculture-london 14, 2364 (2024).


    Google Scholar
     

  • Schmitz, O. J. Species in ecosystems and all that jazz. PLOS Biol. 16, e2006285 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    PubMed 

    Google Scholar
     

  • Thomsen, M. S. et al. Heterogeneity within and among co-occurring foundation species increases biodiversity. Nat. Commun. 13, 581 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).


    Google Scholar
     

  • Larkin, D. J. et al. Evolutionary history shapes grassland productivity through opposing effects on complementarity and selection. Ecology 104, e4129 (2023).

    PubMed 

    Google Scholar
     

  • Fox, J. W. & Vasseur, D. A. Character convergence under competition for nutritionally essential resources. Am. Nat. 172, 667–680 (2008).

    PubMed 

    Google Scholar
     

  • Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    PubMed 

    Google Scholar
     

  • Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).


    Google Scholar
     

  • Moreno-Mateos, D. et al. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 4, 676–685 (2020).

    PubMed 

    Google Scholar
     

  • Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Capmourteres, V. & Anand, M. Conservation value: a review of the concept and its quantification. Ecosphere 7, e01476 (2016).


    Google Scholar
     

  • Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 

    Google Scholar
     

  • Gampe, D. et al. Increasing impact of warm droughts on Northern ecosystem productivity over recent decades. Nat. Clim. Change. 11, 772–779 (2021).

    ADS 

    Google Scholar
     

  • Fang, Z. et al. Global increase in the optimal temperature for the productivity of terrestrial ecosystems. Commun. Earth Environ. 5, 1–9 (2024).


    Google Scholar
     

  • García, F. C., Bestion, E. & Warfield, R. Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. PNAS 115, 10989–10994 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, F. W. et al. Seasonality regulates the effects of resource addition on plant diversity and ecosystem functioning in semi-arid grassland. J. Plant. Ecol. 14, 1143–1157 (2021).


    Google Scholar
     

  • Ye, J. S., Reynolds, J. F., Sun, G. J. & Li, F. M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan plateau: a modeling analysis. Clim. Change. 119, 321–332 (2013).

    ADS 

    Google Scholar
     

  • Huang, X. et al. Acidification of soil due to forestation at the global scale. Ecol. Manage. 505, 119951 (2022).


    Google Scholar
     

  • Pärtel, M. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83, 2361–2366 (2002).


    Google Scholar
     

  • Cadotte, M. W. The new diversity: management gains through insights into the functional diversity of communities. J. Appl. Ecol. 48, 1067–1069 (2011).


    Google Scholar
     

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 

    Google Scholar
     



  • Source link

    More From Forest Beat

    (Bee) Sex in the city: a new study shows how urban...

    Bees are among the most important pollinators in the natural world, quietly sustaining ecosystems and food production. While honeybees often steal the spotlight,...
    Biodiversity
    3
    minutes

    Forecasting impacts of climate change on barking deer distribution in Pakistan

    Garcia-ulloa, J., Verones, F., Huijbregts, M. A. J. & Schipper, A. M. Article habitat fragmentation amplifies threats from habitat loss to mammal diversity...
    Biodiversity
    8
    minutes

    Mining must overcome challenges to contribute towards a nature-positive future

    The mining industry has decades of experience in restoration, biodiversity management and conservation, often beyond the mine fence. Emma Gagen, Director of Data and...
    Biodiversity
    0
    minutes

    The draft genome sequences of the cosmopolitan centric diatom, the genus...

    Round, F.E., Crawford, R.M. & Mann, D.G. The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press. p. 747 (1990).Gordon, R....
    Biodiversity
    6
    minutes
    spot_imgspot_img