Spillovers and legacies of land management on temperate woodland biodiversity


  • MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Daily, G. C. Countryside biogeography and the provision of ecosystem services. In Nature and Human Society: The Quest for a Sustainable World (ed. Raven, P.) 104–113 (National Academies Press, 1997).

  • Auffret, A. G., Plue, J. & Cousins, S. A. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, S51–S59 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lunt, I. D. & Spooner, P. G. Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J. Biogeogr. 32, 1859–1873 (2005).

    Article 

    Google Scholar
     

  • Ridding, L. E. et al. Long-term change in calcareous grassland vegetation and drivers over three time periods between 1970 and 2016. Plant Ecol. 221, 377–394 (2020).

    Article 

    Google Scholar
     

  • Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).

    Article 

    Google Scholar
     

  • Rackham, O. Woodlands (Collins, 2006).

  • Matthiopoulos, J. Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. Ecol. Monogr. https://doi.org/10.1002/ecm.1545 (2022).

  • Neumann, J. L., Holloway, G. J., Hoodless, A., Griffiths, G. H. & Brotons, L. The legacy of 20th century landscape change on today’s woodland carabid communities. Divers. Distrib. 23, 1447–1458 (2017).

    Article 

    Google Scholar
     

  • Dambrine, E. et al. Present forest biodiversity patterns in france related to former Roman agriculture. Ecology 88, 1430–1439 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lira, P. K., de Souza Leite, M. & Metzger, J. P. Temporal lag in ecological responses to landscape change: Where are we now? Curr. Landsc. Ecol. Rep. 4, 70–82 (2019).

    Article 

    Google Scholar
     

  • Haddou, Y., Mancy, R., Matthiopoulos, J., Spatharis, S. & Dominoni, D. M. Widespread extinction debts and colonization credits in United States breeding bird communities. Nat. Ecol. Evol. 6, 324–331 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semper-Pascual, A. et al. How do habitat amount and habitat fragmentation drive time-delayed responses of biodiversity to land-use change? Proc. Biol. Sci. 288, 20202466 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suggitt, A. J. et al. Linking climate warming and land conversion to species’ range changes across Great Britain. Nat. Commun. 14, 6759 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, M. J. et al. Short- and long-term effects of habitat fragmentation differ but are predicted by response to the matrix. Ecology 98, 807–819 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Verheyen, K., Vellend, M., Van Calster, H., Peterken, G. & Hermy, M. Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85, 3302–3312 (2004).

    Article 

    Google Scholar
     

  • Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B. & Smith, A. L. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28, 605–613 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Forman, R. T. T. Land Mosaics. The Ecology of Landscapes and Regions (Cambridge Univ. Press, 1995).

  • Fischer, C., Thies, C. & Tscharntke, T. Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol. Conserv. 144, 1130–1136 (2011).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Performance of agglomeration bonuses in conservation auctions: lessons from a framed field experiment. Environ. Resour. Econ. 73, 843–869 (2019).

    Article 

    Google Scholar
     

  • Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24, 660–668 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Peterken, G. & Game, M. Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J. Ecol. 72, 155–182 (1984).

    Article 

    Google Scholar
     

  • Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hanley, N. et al. Economic determinants of biodiversity change over a 400-year period in the Scottish uplands. J. Appl. Ecol. 45, 1557–1565 (2008).

    Article 

    Google Scholar
     

  • Watts, K. et al. Using historical woodland creation to construct a long-term, large-scale natural experiment: the WrEN project. Ecol. Evol. 6, 3012–3025 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuentes-Montemayor, E., Park, K. J., Cordts, K. & Watts, K. The long-term development of temperate woodland creation sites: from tree saplings to mature woodlands. Forestry 95, 28–37 (2022).

    Article 

    Google Scholar
     

  • Watts, K. & Hughes, S. Fragmentation impacts may be mixed for conservation but generally bad for restoration. Restor. Ecol. https://doi.org/10.1111/rec.14260 (2024).

  • Doser, J. W., Finley, A. O., Kéry, M. & Zipkin, E. F. spOccupancy: an R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods Ecol. Evol. 13, 1670–1678 (2022).

    Article 

    Google Scholar
     

  • Doser, J. W., Finley, A. O. & Banerjee, S. Joint species distribution models with imperfect detection for high-dimensional spatial data. Ecology 104, e4137 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hinsley, S. A. & Bellamy, P. E. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: a review. J. Environ. Manag. 60, 33–49 (2000).

    Article 

    Google Scholar
     

  • Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57, 1244–1257 (2020).

    Article 

    Google Scholar
     

  • Nordén, B. et al. Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Écoscience 21, 34–45 (2015).

    Article 

    Google Scholar
     

  • Valdés, A. et al. High ecosystem service delivery potential of small woodlands in agricultural landscapes. J. Appl. Ecol. 57, 4–16 (2020).

    Article 

    Google Scholar
     

  • Waddell, E. H. et al. Larger and structurally complex woodland creation sites provide greater benefits for woodland plants. Ecol. Solut. Evid. 5, e12339 (2024).

    Article 

    Google Scholar
     

  • Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).

    Article 

    Google Scholar
     

  • Laliberte, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Mancini, F. et al. Invertebrate biodiversity continues to decline in cropland. Proc. R. Soc. B https://doi.org/10.1098/rspb.2023.0897 (2023).

  • Rigal, S. et al. Farmland practices are driving bird population decline across Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marrec, R. et al. Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Glob. Ecol. Biogeogr. 30, 165–182 (2020).

    Article 

    Google Scholar
     

  • Jukes, M. R., Peace, A. J. & Ferris, R. Carabid beetle communities associated with coniferous plantations in Britain: the influence of site, ground vegetation and stand structure. For. Ecol. Manag. 148, 271–286 (2001).

    Article 

    Google Scholar
     

  • Spake, R., Barsoum, N., Newton, A. C. & Doncaster, C. P. Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations. Ecol. Manag. 359, 300–308 (2016).

    Article 

    Google Scholar
     

  • Burton, V., Moseley, D., Brown, C., Metzger, M. J. & Bellamy, P. Reviewing the evidence base for the effects of woodland expansion on biodiversity and ecosystem services in the United Kingdom. For. Ecol. Manag. 430, 366–379 (2018).

    Article 

    Google Scholar
     

  • Dolman, P., Hinsley, S., Bellamy, P. & Watts, K. Woodland birds in patchy landscapes: the evidence base for strategic networks. Ibis 149, 146–160 (2007).

    Article 

    Google Scholar
     

  • Bellamy, P., Hinsley, S. & Newton, I. Factors influencing bird species numbers in small woods in South-East England. J. Appl. Ecol. 33, 249–262 (1996).

    Article 

    Google Scholar
     

  • Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2009).

    Article 

    Google Scholar
     

  • Burns, F. et al. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16647–16660 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donal, P. F., Gree, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Biol. Sci. 268, 25–29 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gove, B., Power, S. A., Buckley, G. P. & Ghazoul, J. Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. J. Appl. Ecol. 44, 374–384 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gentili, S., Sigura, M. & Bonesi, L. Decreased small mammals species diversity and increased population abundance along a gradient of agricultural intensification. Hystrix 25, 39–44 (2014).


    Google Scholar
     

  • Broughton, R. K. et al. Agri-environment scheme enhances small mammal diversity and abundance at the farm-scale. Agric. Ecosyst. Environ. 192, 122–129 (2014).

    Article 

    Google Scholar
     

  • Petit, S. et al. Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landsc. Ecol. 19, 463–471 (2004).

    Article 

    Google Scholar
     

  • Hulshof, C. M., Spasojevic, M. J. & Schrodt, F. The edaphic control of plant diversity. Glob. Ecol. Biogeogr. 29, 1634–1650 (2020).

    Article 

    Google Scholar
     

  • Hermy, M., Honnay, O., Firbank, L., Grashof-Bokdam, C. & Lawesson, J. E. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol. Conserv. 91, 9–22 (1999).

    Article 

    Google Scholar
     

  • Knapp, J. L., Nicholson, C. C., Jonsson, O., de Miranda, J. R. & Rundlof, M. Ecological traits interact with landscape context to determine bees’ pesticide risk. Nat. Ecol. Evol. 7, 547–556 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ausprey, I. J., Newell, F. L. & Robinson, S. K. Sensitivity of tropical montane birds to anthropogenic disturbance and management strategies for their conservation in agricultural landscapes. Conserv. Biol. https://doi.org/10.1111/cobi.14136 (2023).

  • Smith, K. W. The utilization of dead wood resources by woodpeckers in Britain. Ibis 149, 183–192 (2007).

    Article 

    Google Scholar
     

  • Bellamy, P. E. et al. Impact of woodland agri-environment management on woodland structure and target bird species. J. Environ. Manag. 316, 115221 (2022).

    Article 

    Google Scholar
     

  • Lamb, A. et al. The consequences of land sparing for birds in the United Kingdom. J. Appl. Ecol. 56, 1870–1881 (2019).

    Article 

    Google Scholar
     

  • Douglas, D. J. T., Groom, J. D. & Scridel, D. Benefits and costs of native reforestation for breeding songbirds in temperate uplands. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108483 (2020).

  • Finch, T. et al. Spatially targeted nature-based solutions can mitigate climate change and nature loss but require a systems approach. One Earth 6, 1350–1374 (2023).

    Article 

    Google Scholar
     

  • Wilson, J. D. et al. Modelling edge effects of mature forest plantations on peatland waders informs landscape-scale conservation. J. Appl. Ecol. 51, 204–213 (2014).

    Article 

    Google Scholar
     

  • Aebischer, N. J. et al. Twenty years of local farmland bird conservation: the effects of management on avian abundance at two UK demonstration sites. Bird. Study 63, 10–30 (2015).

    Article 

    Google Scholar
     

  • Sharps, E. et al. Reversing declines in farmland birds: how much agri‐environment provision is needed at farm and landscape scales. J. Appl. Ecol. 60, 568–580 (2023).

    Article 

    Google Scholar
     

  • Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).

    Article 

    Google Scholar
     

  • Nicholson, C. C. et al. Pesticide use negatively affects bumble bees across European landscapes. Nature https://doi.org/10.1038/s41586-023-06773-3 (2023).

  • Smart, S. M. 50 years of change across British broadleaved woodlands. (UK Centre for Ecology & Hydrology, 2024).

  • Harmer, R., Peterken, G., Kerr, G. & Poulton, P. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biol. Conserv. 101, 291–304 (2001).

    Article 

    Google Scholar
     

  • Collas, L. et al. The costs of delivering environmental outcomes with land sharing and land sparing. People Nat. 5, 228–240 (2022).

    Article 

    Google Scholar
     

  • Bradfer‐Lawrence, T. et al. The potential contribution of terrestrial nature‐based solutions to a national ‘net zero’ climate target. J. Appl. Ecol. 58, 2349–2360 (2021).

    Article 

    Google Scholar
     

  • Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Article 

    Google Scholar
     

  • Villard, M. A., Trzcinski, M. K. & Merriam, G. Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv. Biol. 13, 774–783 (2001).

    Article 

    Google Scholar
     

  • Davies, Z. G. & Pullin, A. S. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landsc. Ecol. 22, 333–351 (2007).

    Article 

    Google Scholar
     

  • Marchant, J. H., Hudson, R., Whittington, P. & Carter, S. Population Trends in British Breeding Birds (British Trust for Ornithology, 1990).

  • Whytock, R. C. et al. Bird-community responses to habitat creation in a long-term, large-scale natural experiment. Conserv. Biol. 32, 345–354 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • National Forest Inventory GB 2015 (Forestry Commission, 2018).

  • Ancient woodland (England). Natural England https://naturalengland-defra.opendata.arcgis.com/datasets/ancient-woodland-england/explore (2023).

  • Ancient woodland inventory. NatureScot https://opendata.nature.scot/datasets/ancient-woodland-inventory/explore (2023).

  • Jackson, H. B. & Fahrig, L. Are ecologists conducting research at the optimal scale. Glob. Ecol. Biogeogr. 24, 52–63 (2014).

    Article 

    Google Scholar
     

  • Mapping Trees Outside Woodlands and Hedgerows (Forest Research, 2021).

  • Rowland, C. S., Morton, R. D., Carrasco, L., O’Neil, A. W. & Wood, C. M. Land cover map 2015 (NERC Environmental Information Data Centre, 2017).

  • University of Edinburgh. AgCensus dataset. Edina Digimap (2023); https://digimap.edina.ac.uk/

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Article 

    Google Scholar
     

  • R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2022).

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).

    Article 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology. R package version 2.6-4. R Foundation for Statistical Computing https://CRAN.R-project.org/package=vegan (2022).

  • Bradfer-Lawrence, T. et al. Data and code for “Spillovers and legacies of land management on temperate woodland biodiversity” (Version 1) [Data set]. Zenodo https://doi.org/10.5281/zenodo.14946190 (2025).

  • Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. https://doi.org/10.21105/joss.01541 (2019).



  • Source link

    More From Forest Beat

    For many island species, the next tropical cyclone may be their...

    When a major cyclone tears through an island nation, all efforts rightly focus on saving human lives and restoring...
    Biodiversity
    3
    minutes

    Mapping benthic habitats in Bohai Bay, China

    Habitat classification schemeDeveloping a benthic habitat classification scheme is a fundamental step in benthic habitat mapping, providing a structured framework for organizing and...
    Biodiversity
    8
    minutes

    Effect of climate on traits of dominant and rare tree species...

    Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, SwitzerlandIris Hordijk, Chelsea Chisholm, Daniel S. Maynard & Thomas W. CrowtherWageningen University and Research, Wageningen,...
    Biodiversity
    15
    minutes

    CheloniansTraits: a comprehensive trait database of global turtles and tortoises

    Lyson, T. R. et al. Fossorial origin of the turtle shell. Current Biology 26, 1887–1894 (2016).CAS  PubMed  ...
    Biodiversity
    6
    minutes
    spot_imgspot_img