MacArthur, R. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).
Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685 (2012).
Daily, G. C. Countryside biogeography and the provision of ecosystem services. In Nature and Human Society: The Quest for a Sustainable World (ed. Raven, P.) 104–113 (National Academies Press, 1997).
Auffret, A. G., Plue, J. & Cousins, S. A. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, S51–S59 (2015).
Lunt, I. D. & Spooner, P. G. Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J. Biogeogr. 32, 1859–1873 (2005).
Ridding, L. E. et al. Long-term change in calcareous grassland vegetation and drivers over three time periods between 1970 and 2016. Plant Ecol. 221, 377–394 (2020).
Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).
Rackham, O. Woodlands (Collins, 2006).
Matthiopoulos, J. Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. Ecol. Monogr. https://doi.org/10.1002/ecm.1545 (2022).
Neumann, J. L., Holloway, G. J., Hoodless, A., Griffiths, G. H. & Brotons, L. The legacy of 20th century landscape change on today’s woodland carabid communities. Divers. Distrib. 23, 1447–1458 (2017).
Dambrine, E. et al. Present forest biodiversity patterns in france related to former Roman agriculture. Ecology 88, 1430–1439 (2007).
Lira, P. K., de Souza Leite, M. & Metzger, J. P. Temporal lag in ecological responses to landscape change: Where are we now? Curr. Landsc. Ecol. Rep. 4, 70–82 (2019).
Haddou, Y., Mancy, R., Matthiopoulos, J., Spatharis, S. & Dominoni, D. M. Widespread extinction debts and colonization credits in United States breeding bird communities. Nat. Ecol. Evol. 6, 324–331 (2022).
Semper-Pascual, A. et al. How do habitat amount and habitat fragmentation drive time-delayed responses of biodiversity to land-use change? Proc. Biol. Sci. 288, 20202466 (2021).
Suggitt, A. J. et al. Linking climate warming and land conversion to species’ range changes across Great Britain. Nat. Commun. 14, 6759 (2023).
Evans, M. J. et al. Short- and long-term effects of habitat fragmentation differ but are predicted by response to the matrix. Ecology 98, 807–819 (2017).
Verheyen, K., Vellend, M., Van Calster, H., Peterken, G. & Hermy, M. Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85, 3302–3312 (2004).
Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B. & Smith, A. L. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28, 605–613 (2013).
Forman, R. T. T. Land Mosaics. The Ecology of Landscapes and Regions (Cambridge Univ. Press, 1995).
Fischer, C., Thies, C. & Tscharntke, T. Small mammals in agricultural landscapes: opposing responses to farming practices and landscape complexity. Biol. Conserv. 144, 1130–1136 (2011).
Liu, Z. et al. Performance of agglomeration bonuses in conservation auctions: lessons from a framed field experiment. Environ. Resour. Econ. 73, 843–869 (2019).
Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24, 660–668 (2010).
Peterken, G. & Game, M. Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J. Ecol. 72, 155–182 (1984).
Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).
Hanley, N. et al. Economic determinants of biodiversity change over a 400-year period in the Scottish uplands. J. Appl. Ecol. 45, 1557–1565 (2008).
Watts, K. et al. Using historical woodland creation to construct a long-term, large-scale natural experiment: the WrEN project. Ecol. Evol. 6, 3012–3025 (2016).
Fuentes-Montemayor, E., Park, K. J., Cordts, K. & Watts, K. The long-term development of temperate woodland creation sites: from tree saplings to mature woodlands. Forestry 95, 28–37 (2022).
Watts, K. & Hughes, S. Fragmentation impacts may be mixed for conservation but generally bad for restoration. Restor. Ecol. https://doi.org/10.1111/rec.14260 (2024).
Doser, J. W., Finley, A. O., Kéry, M. & Zipkin, E. F. spOccupancy: an R package for single‐species, multi‐species, and integrated spatial occupancy models. Methods Ecol. Evol. 13, 1670–1678 (2022).
Doser, J. W., Finley, A. O. & Banerjee, S. Joint species distribution models with imperfect detection for high-dimensional spatial data. Ecology 104, e4137 (2023).
Hinsley, S. A. & Bellamy, P. E. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: a review. J. Environ. Manag. 60, 33–49 (2000).
Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57, 1244–1257 (2020).
Nordén, B. et al. Effects of ecological continuity on species richness and composition in forests and woodlands: a review. Écoscience 21, 34–45 (2015).
Valdés, A. et al. High ecosystem service delivery potential of small woodlands in agricultural landscapes. J. Appl. Ecol. 57, 4–16 (2020).
Waddell, E. H. et al. Larger and structurally complex woodland creation sites provide greater benefits for woodland plants. Ecol. Solut. Evid. 5, e12339 (2024).
Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).
Laliberte, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).
Mancini, F. et al. Invertebrate biodiversity continues to decline in cropland. Proc. R. Soc. B https://doi.org/10.1098/rspb.2023.0897 (2023).
Rigal, S. et al. Farmland practices are driving bird population decline across Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).
Marrec, R. et al. Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Glob. Ecol. Biogeogr. 30, 165–182 (2020).
Jukes, M. R., Peace, A. J. & Ferris, R. Carabid beetle communities associated with coniferous plantations in Britain: the influence of site, ground vegetation and stand structure. For. Ecol. Manag. 148, 271–286 (2001).
Spake, R., Barsoum, N., Newton, A. C. & Doncaster, C. P. Drivers of the composition and diversity of carabid functional traits in UK coniferous plantations. Ecol. Manag. 359, 300–308 (2016).
Burton, V., Moseley, D., Brown, C., Metzger, M. J. & Bellamy, P. Reviewing the evidence base for the effects of woodland expansion on biodiversity and ecosystem services in the United Kingdom. For. Ecol. Manag. 430, 366–379 (2018).
Dolman, P., Hinsley, S., Bellamy, P. & Watts, K. Woodland birds in patchy landscapes: the evidence base for strategic networks. Ibis 149, 146–160 (2007).
Bellamy, P., Hinsley, S. & Newton, I. Factors influencing bird species numbers in small woods in South-East England. J. Appl. Ecol. 33, 249–262 (1996).
Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2009).
Burns, F. et al. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16647–16660 (2021).
Donal, P. F., Gree, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Biol. Sci. 268, 25–29 (2001).
Gove, B., Power, S. A., Buckley, G. P. & Ghazoul, J. Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. J. Appl. Ecol. 44, 374–384 (2007).
Gentili, S., Sigura, M. & Bonesi, L. Decreased small mammals species diversity and increased population abundance along a gradient of agricultural intensification. Hystrix 25, 39–44 (2014).
Broughton, R. K. et al. Agri-environment scheme enhances small mammal diversity and abundance at the farm-scale. Agric. Ecosyst. Environ. 192, 122–129 (2014).
Petit, S. et al. Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landsc. Ecol. 19, 463–471 (2004).
Hulshof, C. M., Spasojevic, M. J. & Schrodt, F. The edaphic control of plant diversity. Glob. Ecol. Biogeogr. 29, 1634–1650 (2020).
Hermy, M., Honnay, O., Firbank, L., Grashof-Bokdam, C. & Lawesson, J. E. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol. Conserv. 91, 9–22 (1999).
Knapp, J. L., Nicholson, C. C., Jonsson, O., de Miranda, J. R. & Rundlof, M. Ecological traits interact with landscape context to determine bees’ pesticide risk. Nat. Ecol. Evol. 7, 547–556 (2023).
Ausprey, I. J., Newell, F. L. & Robinson, S. K. Sensitivity of tropical montane birds to anthropogenic disturbance and management strategies for their conservation in agricultural landscapes. Conserv. Biol. https://doi.org/10.1111/cobi.14136 (2023).
Smith, K. W. The utilization of dead wood resources by woodpeckers in Britain. Ibis 149, 183–192 (2007).
Bellamy, P. E. et al. Impact of woodland agri-environment management on woodland structure and target bird species. J. Environ. Manag. 316, 115221 (2022).
Lamb, A. et al. The consequences of land sparing for birds in the United Kingdom. J. Appl. Ecol. 56, 1870–1881 (2019).
Douglas, D. J. T., Groom, J. D. & Scridel, D. Benefits and costs of native reforestation for breeding songbirds in temperate uplands. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108483 (2020).
Finch, T. et al. Spatially targeted nature-based solutions can mitigate climate change and nature loss but require a systems approach. One Earth 6, 1350–1374 (2023).
Wilson, J. D. et al. Modelling edge effects of mature forest plantations on peatland waders informs landscape-scale conservation. J. Appl. Ecol. 51, 204–213 (2014).
Aebischer, N. J. et al. Twenty years of local farmland bird conservation: the effects of management on avian abundance at two UK demonstration sites. Bird. Study 63, 10–30 (2015).
Sharps, E. et al. Reversing declines in farmland birds: how much agri‐environment provision is needed at farm and landscape scales. J. Appl. Ecol. 60, 568–580 (2023).
Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).
Nicholson, C. C. et al. Pesticide use negatively affects bumble bees across European landscapes. Nature https://doi.org/10.1038/s41586-023-06773-3 (2023).
Smart, S. M. 50 years of change across British broadleaved woodlands. (UK Centre for Ecology & Hydrology, 2024).
Harmer, R., Peterken, G., Kerr, G. & Poulton, P. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biol. Conserv. 101, 291–304 (2001).
Collas, L. et al. The costs of delivering environmental outcomes with land sharing and land sparing. People Nat. 5, 228–240 (2022).
Bradfer‐Lawrence, T. et al. The potential contribution of terrestrial nature‐based solutions to a national ‘net zero’ climate target. J. Appl. Ecol. 58, 2349–2360 (2021).
Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
Villard, M. A., Trzcinski, M. K. & Merriam, G. Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv. Biol. 13, 774–783 (2001).
Davies, Z. G. & Pullin, A. S. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landsc. Ecol. 22, 333–351 (2007).
Marchant, J. H., Hudson, R., Whittington, P. & Carter, S. Population Trends in British Breeding Birds (British Trust for Ornithology, 1990).
Whytock, R. C. et al. Bird-community responses to habitat creation in a long-term, large-scale natural experiment. Conserv. Biol. 32, 345–354 (2018).
National Forest Inventory GB 2015 (Forestry Commission, 2018).
Ancient woodland (England). Natural England https://naturalengland-defra.opendata.arcgis.com/datasets/ancient-woodland-england/explore (2023).
Ancient woodland inventory. NatureScot https://opendata.nature.scot/datasets/ancient-woodland-inventory/explore (2023).
Jackson, H. B. & Fahrig, L. Are ecologists conducting research at the optimal scale. Glob. Ecol. Biogeogr. 24, 52–63 (2014).
Mapping Trees Outside Woodlands and Hedgerows (Forest Research, 2021).
Rowland, C. S., Morton, R. D., Carrasco, L., O’Neil, A. W. & Wood, C. M. Land cover map 2015 (NERC Environmental Information Data Centre, 2017).
University of Edinburgh. AgCensus dataset. Edina Digimap (2023); https://digimap.edina.ac.uk/
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).
R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2022).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
Oksanen, J. et al. vegan: Community Ecology. R package version 2.6-4. R Foundation for Statistical Computing https://CRAN.R-project.org/package=vegan (2022).
Bradfer-Lawrence, T. et al. Data and code for “Spillovers and legacies of land management on temperate woodland biodiversity” (Version 1) [Data set]. Zenodo https://doi.org/10.5281/zenodo.14946190 (2025).
Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. https://doi.org/10.21105/joss.01541 (2019).