Dijkstra, K.-D. B., Monaghan, M. T. & Pauls, S. U. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 59, 143–163 (2014).
Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).
Eggleton, P. The state of the World’s insects. Annu Rev. Environ. Resour. 45, 61–82 (2020).
Van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A. & Chase, J. M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
Mammides, C. European Union’s conservation efforts are taxonomically biased. Biodivers. Conserv. 28, 1291–1296 (2019).
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Gutiérrez-Cánovas, C., Millán, A., Velasco, J., Vaughan, I. P. & Ormerod, S. J. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Glob. Ecol. Biogeogr. 22, 796–805 (2013).
Haase, P. et al. The recovery of European freshwater biodiversity has come to a halt. Nature 620, 582–588 (2023).
Rumschlag, S. L. et al. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci. Adv. 9, eadf4896 (2023).
Cooke, S. J. et al. Can the planetary health concept save freshwater biodiversity and ecosystems?. Lancet Planet Health 8, e2–e3 (2024).
Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
Ferzoco, I. M. C. et al. Freshwater insect communities in urban environments around the globe: a review of the state of the field. Front. Ecol. Evol. 11, 1174166 (2023).
Firmiano, K. R. et al. Land use and local environment affect macroinvertebrate metacommunity organization in Neotropical stream networks. J. Biogeogr. 48, 479–491 (2021).
Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA115, E10397–E10406 (2018).
Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).
Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).
Noriega, J. A. et al. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat. Commun. 14, 8070 (2023).
Pimiento, C. et al. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat. Commun. 14, 7691 (2023).
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).
Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J.-C. Big data of tree species distributions: How big and how good?. Ecosyst 4, 30 (2018).
Xu, W. et al. Global beta-diversity of angiosperm trees is shaped by Quaternary climate change. Sci. Adv. 9, eadd8553 (2023).
Grigoropoulou, A. et al. The global EPTO database: worldwide occurrences of aquatic insects. Glob. Ecol. Biogeogr. 32, 642–655 (2023).
Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).
Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314 (2020).
Chen, B. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agr. For. Meteorol. 189, 11–18 (2014).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of Latitudinal Gradients in Marine Species Richness. Trends Ecol. Evol. 31, 670–676 (2016).
Gorta, S. et al. Multi-taxon biodiversity responses to the 2019–2020 Australian megafires. Glob. Change Biol. 29, 6727–6740 (2023).
Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).
Cimatti, M., Chaplin-Kramer, R. & Di Marco, M. The role of high-biodiversity regions in preserving Nature’s Contributions to People. Nat. Sustain. 6, 1385–1393 (2023).
Marin, F. R. et al. Protecting the Amazon forest and reducing global warming via agricultural intensification. Nat. Sustain. 5, 1018–1026 (2022).
Alves, D. M. C. C. et al. Unveiling geographical gradients of species richness from scant occurrence data. Glob. Ecol. Biogeogr. 29, 748–759 (2020).
Yang, W., Ma, K. & Kreft, H. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J. Biogeogr. 40, 1415–1426 (2013).
Kusumoto, B., Chao, A., Eiserhardt, W. L., Svenning, J.-C., Shiono, T. & Kubota, Y. Occurrence-based diversity estimation reveals macroecological and conservation knowledge gaps for global woody plants. Sci. Adv. 9, eadh9719 (2023).
Leclercq, N. et al. European bee diversity: taxonomic and phylogenetic patterns. J. Biogeogr. 50, 1244–1256 (2023).
Pearson, R. G. & Boyero, L. Gradients in regional diversity of freshwater taxa. J.North Am. Benthol. Soc. 28, 504–514 (2009).
Vinson, M. R. & Hawkins, C. P. Broad-scale geographical patterns in local stream insect genera richness. Ecography 26, 751–767 (2003).
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).
Vinson, M. R. & Hawkins, C. P. Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev. Entomol. 43, 271–293 (1998).
Menegotto, A. & Rangel, T. F. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nat. Commun. 9, 4713 (2018).
Menegotto, A., Tittensor, D. P., Colwell, R. K. & Rangel, T. F. Sampling simulation in a virtual ocean reveals strong sampling effect in marine diversity patterns. Glob. Ecol. Biogeogr. 34, e13952 (2025).
Schmidt-Kloiber, A. et al. Aquatic biodiversity in Europe: a unique dataset on the distribution of Trichoptera species with important implications for conservation. Hydrobiologia 797, 11–27 (2017).
Twardochleb, L., Hiltner, E., Pyne, M. & Zarnetske, P. Freshwater insects CONUS: a database of freshwater insect occurrences and traits for the contiguous United States. Glob. Ecol. Biogeogr. 30, 826–841 (2021).
Arle, J., Mohaupt, V. & Kirst, I. Monitoring of surface waters in germany under the water framework directive-a review of approaches, methods and results. Water 8, 217 (2016).
Buss, D. F. et al. Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ. Monit. Assess. 187, 4132 (2015).
Rosenzweig, M., Turner, W., Cox, J. & Ricketts, T. Estimating diversity in unsampled habitats of a biogeographical province. Conserv. Biol. 17, 864–874 (2003).
Kouki, J. Latitudinal gradients in species richness in northern areas: some exceptional patterns. Ecol. Bull 40, 30–37 (1999).
Laland, K., Matthews, B. & Feldman, M. W. An introduction to niche construction theory. Evol. Ecol. 30, 191–202 (2016).
Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B-Biol. Sci. 283, 20152013 (2016).
Brown, L. E., Hannan, D. M. & Milner, A. M. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob. Change Biol. 13, 958–966 (2007).
Finn, D. S., Räsänen, K. & Robinson, C. T. Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Glob. Change Biol. 16, 3314–3326 (2010).
Chao, A. et al. Measuring temporal change in alpha diversity: a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods Ecol. Evol. 12, 1926–1940 (2021).
Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).
Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).
Musonge, P. S. L., Boets, P., Lock, K. & Goethals, P. L. M. Drivers of benthic macroinvertebrate assemblages in equatorial alpine rivers of the Rwenzoris (Uganda). Water 12, 1668 (2020).
Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).
Stewart, B. A., Close, P. G., Cook, P. A. & Davies, P. M. Upper thermal tolerances of key taxonomic groups of stream invertebrates. Hydrobiologia 718, 131–140 (2013).
Gillard, M., Aroviita, J. & Alahuhta, J. Same species, same habitat preferences? The distribution of aquatic plants is not explained by the same predictors in lakes and streams. Freshwater Biol. 65, 878–892 (2020).
Pérez-Burillo, J. et al. Stream diatom community assembly processes in islands and continents: a global perspective. J. Biogeogr. 51, 382–393 (2023).
Pound, K. L., Larson, C. A. & Passy, S. I. Current distributions and future climate-driven changes in diatoms, insects and fish in U.S. streams. Glob. Ecol. Biogeogr. 30, 63–78 (2021).
Kuussaari, M., Heliölä, J., Pöyry, J. & Saarinen, K. Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J. Insect Conserv. 11, 351–366 (2007).
Feng, L., Ma, X. M., Hughes, A. C. & Feng, G. Elevation range and contemporary climate determine the taxonomic, functional and phylogenetic diversity of forest mammals. Biodivers. Conserv. 32, 4651–4664 (2023).
Brumberg, H. et al. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manag. 286, 112132 (2021).
Kreye, M. M., Adams, D. C. & Escobedo, F. J. The value of forest conservation for water quality protection. Forests 5, 862–884 (2014).
Nessimian, J. L. et al. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614, 117–131 (2008).
Carrasco, L. R., Webb, E. L., Symes, W. S., Koh, L. P. & Sodhi, N. S. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biol. 15, e2001657 (2017).
Clausnitzer, V. et al. Focus on African freshwaters: hotspots of dragonfly diversity and conservation concern. Front. Ecol. Environ. 10, 129–134 (2012).
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).
Dolédec, S., Olivier, J.-M. & Statzner, B. Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: effects of taxonomic and spatial resolution. Arch. fur Hydrobiol. 148, 25–43 (2000).
Gayraud, S. et al. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshwater Biol. 48, 2045–2064 (2003).
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process 27, 2171–2186 (2013).
Heino, J. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biol. 50, 1578–1587 (2005).
Poff, N. et al. Functional trait Niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. North Am. Benthol. Soc. 25, 730–755 (2006).
Sarremejane, R. et al. DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci. Data 7, 386 (2020).
Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).
Wang, T. & Sun, F. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9, 221 (2022).
Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
Nagelkerke, N. J. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).
Cliff, A. D. & Ord, J. K. Spatial processes: models & applications. Q. Rev. Biol. 57, 236–236 (1982).
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org (2020).
Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R. & Wagner, H. H. vegan Community Ecology Package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).
Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).