Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).
Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).
Müller, J. et al. Weather explains the decline and rise of insect biomass over 34 years. Nature 628, 349–354 (2024).
Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).
Stork, N. E., Boyle, M. J. W., Wardhaugh, C. & Beaver, R. A. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Divers. 17, 1156–1166 (2024).
Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).
Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019).
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).
Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).
Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).
Cai, W. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat. Rev. Earth Environ. 4, 407–418 (2023).
Boyle, M. J. W. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. 1, 315–331 (2025).
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).
Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).
Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54 (2016).
Huang, B. et al. Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).
Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).
Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) 65–86 (American Geophysical Union, 2020).
Vencl, F. V. & Srygley, R. B. El Niño oscillations impact anti-predator defences to alter survival of an herbivorous beetle in a neotropical wet forest. J. Trop. Ecol. 39, e34 (2023).
França, F. M. et al. El Niño impacts on human-modified tropical forests: consequences for dung beetle diversity and associated ecological processes. Biotropica 52, 252–262 (2020).
Roubik, D. W. Ups and downs in pollinator populations: When is there a decline?. Conserv. Ecol. 5, 2 (2001).
Richardson, B. A. The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica 31, 321–336 (1999).
Schowalter, T. D. & Ganio, L. M. Invertebrate communities in a tropical rain forest canopy in Puerto Rico following Hurricane Hugo. Ecol. Entomol. 24, 191–201 (2001).
Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).
Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B. C. H. & Bonebrake, T. C. Inter-annual monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica 51, 519–528 (2019).
Roubik, D. W. et al. Long-term (1979–2019) dynamics of protected orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021).
Bonebrake, T. C. et al. Warming threat compounds habitat degradation impacts on a tropical butterfly community in Vietnam. Glob. Ecol. Conserv. 8, 203–211 (2016).
Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).
Sánchez González, I. et al. Niche specialization and community niche space increase with species richness in filter-feeder assemblages. Ecosphere 14, e4495 (2023).
Fox, B. J. Niche parameters and species richness. Ecology 62, 1415–1425 (1981).
Cleary, D. F. R. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135, 313–321 (2003).
Detto, M., Wright, S. J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nat. Commun. 9, 913 (2018).
Petráková, L. et al. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci. Rep. 5, 14013 (2015).
Yin, Z.-W., Cai, C.-Y., Huang, D.-Y. & Li, L.-Z. Specialized adaptations for springtail predation in Mesozoic beetles. Sci. Rep. 7, 98 (2017).
Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 21 (2018).
Tsang, T. P. N., Ponisio, L. C. & Bonebrake, T. C. Increasing synchrony opposes stabilizing effects of species richness on terrestrial communities. Divers. Distrib. 29, 849–861 (2023).
Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84 (2014).
Staab, M. et al. Insect decline in forests depends on species’ traits and may be mitigated by management. Commun. Biol. 6, 338 (2023).
Prather, C. M. & Belovsky, G. E. Herbivore and detritivore effects on rainforest plant production are altered by disturbance. Ecol. Evol. 9, 7652–7659 (2019).
Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Systemat. 27, 305–335 (1996).
Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).
Gómez-Zurita, J., Hunt, T., Kopliku, F. & Vogler, A. P. Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PLoS ONE 2, e360 (2007).
Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).
Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).
Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Eppley, T. M. et al. Tropical field stations yield high conservation return on investment. Conserv. Lett. 60, e13007 (2024).
Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).
van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2023).
Oksanen, J. et al. Vegan: community ecology package (2022).
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
Bailey, P. & Emad, A. wCorr: Weighted correlations cran.r-project.org/web/packages/wCorr/index.html (2023).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Wilke, C. & Wiernik, B. ggtext: Improved text rendering support for ‘ggplot2’ cran.r-project.org/web/packages/ggtext/index.html (2022).
Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’ cran.r-project.org/web/packages/cowplot/index.html (2024).
Simpson, G. gratia: Graceful ggplot-based graphics and other functions for GAMs fitted using mgcv cran.r-project.org/web/packages/gratia/index.html (2024).
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).
Box G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Holden-Day, 1994).
Jones, R. H. Longitudinal Data with Serial Correlation: A State-Space Approach (Chapman and Hall, 1993).
Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Stat. Comput. 15, 267–280 (2005).
Wootton, K. L. & Stouffer, D. B. Species’ traits and food-web complexity interactively affect a food web’s response to press disturbance. Ecosphere 7, e01518 (2016).
Mally, R. et al. Historical invasion rates vary among insect trophic groups. Curr. Biol. 34, 5374–5381.e3 (2024).
GBIF.Org user. Occurrence download 29229815. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.6C2QQG (2025).
GBIF.Org user. Occurrence download 2557474. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.R6MNY5 (2025).
GBIF.Org user. Occurrence download 241682722. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.5KF5NR (2025).
GBIF.Org user. Occurrence download 305626069. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.JPEWKC (2025).
GBIF.Org user. Occurrence download 66151475. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4S7VFE (2025).
GBIF.Org user. Occurrence download 207807231. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.4E6SKK (2025).
GBIF.Org user. Occurrence download 379594148. The Global Biodiversity Information Facility https://doi.org/10.15468/DL.2TP7Y3 (2025).
Sharp, A. C. et al. Compiled datasets for “Stronger El Niños reduce tropical forest arthropod diversity and function” [Data set]. Zenodo https://doi.org/10.5281/zenodo.14863367 (2025).
Sharp, A. C. dradamsharp/Stronger-El-Ninos-reduce-tropical-forest-arthropod-diversity-and-function: analysis for ‘Stronger El Niños reduce tropical forest arthropod diversity and function’ (Release). Zenodo https://doi.org/10.5281/zenodo.15428849 (2025).