Temperate forest plants are associated with heterogeneous semi-open canopy conditions shaped by large herbivores


  • Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hédl, R., Kopecký, M. & Komárek, J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers. Distrib. 16, 267–276 (2010).

    Article 

    Google Scholar
     

  • Vojík, M. & Boublík, K. Fear of the dark: decline in plant diversity and invasion of alien species due to increased tree canopy density and eutrophication in lowland woodlands. Plant Ecol. 219, 749–758 (2018).

    Article 

    Google Scholar
     

  • Auffret, A. G. & Svenning, J.-C. Climate warming has compounded plant responses to habitat conversion in northern Europe. Nat. Commun. 13, 7818 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article 

    Google Scholar
     

  • Valente, L. M., Savolainen, V. & Vargas, P. Unparalleled rates of species diversification in Europe. Proc. R. Soc. B 277, 1489–1496 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nürk, N. M., Uribe-Convers, S., Gehrke, B., Tank, D. C. & Blattner, F. R. Oligocene niche shift, Miocene diversification—cold tolerance and accelerated speciation rates in the St. John’s worts (Hypericum, Hypericaceae). BMC Evol. Biol. 15, 80 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balao, F. et al. Early diversification and permeable species boundaries in the Mediterranean firs. Ann. Bot. 125, 495–507 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. R. Soc. Lond. B 268, 2383–2389 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol. 237, 392–407 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847–850 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fine, P. V. A. & Ree, R. H. Evidence for a time‐integrated species–area effect on the latitudinal gradient in tree diversity. Am. Nat. 168, 796–804 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Jiménez-Alfaro, B. et al. Post-glacial determinants of regional species pools in alpine grasslands. Glob. Ecol. Biogeogr. 30, 1101–1115 (2021).

    Article 

    Google Scholar
     

  • Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

  • Alberdi, I. et al. The conservation status assessment of Natura 2000 forest habitats in Europe: capabilities, potentials and challenges of national forest inventories data. Ann. For. Sci. 76, 34 (2019).

    Article 

    Google Scholar
     

  • Langridge, J. et al. Biodiversity responses to forest management abandonment in boreal and temperate forest ecosystems: a meta-analysis reveals an interactive effect of time since abandonment and climate. Biol. Conserv. 287, 110296 (2023).

    Article 

    Google Scholar
     

  • Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. New Phytol. 242, 1018–1028 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lelli, C. et al. Long-term changes in Italian mountain forests detected by resurvey of historical vegetation data. J. Veg. Sci. 32, e12939 (2021).

    Article 

    Google Scholar
     

  • Pringle, R. M. et al. Impacts of large herbivores on terrestrial ecosystems. Curr. Biol. 33, R584–R610 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vera, F. W. M. Grazing Ecology and Forest History (CABI, 2000).

  • Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breckle, S.-W. Walter’s Vegetation of the Earth (Springer, 2002).

  • Clements, F. E. Plant Succession: An Analysis of the Development of Vegetation (Carnegie Institution of Washington, 1916).

  • Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).

    Article 

    Google Scholar
     

  • Petritan, A. M., Nuske, R. S., Petritan, I. C. & Tudose, N. C. Gap disturbance patterns in an old-growth sessile oak (Quercus petraea L.)–European beech (Fagus sylvatica L.) forest remnant in the Carpathian Mountains, Romania. For. Ecol. Manage. 308, 67–75 (2013).

    Article 

    Google Scholar
     

  • Poorter, L. et al. Successional theories. Biol. Rev. 98, 2049–2077 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near-natural temperate deciduous forest in Denmark. For. Ecol. Manage. 126, 173–189 (2000).

    Article 

    Google Scholar
     

  • Wang, L. et al. Tree cover and its heterogeneity in natural ecosystems is linked to large herbivore biomass globally. One Earth 6, 1759–1770 (2023).

    Article 

    Google Scholar
     

  • Ejrnæs, D. D. et al. Vegetation dynamics following three decades of trophic rewilding in the mesic grasslands of Oostvaardersplassen. Appl. Veg. Sci. 27, e12805 (2024).

    Article 

    Google Scholar
     

  • Pedersen, R. Ø., Faurby, S. & Svenning, J.-C. Late-Quaternary megafauna extinctions have strongly reduced mammalian vegetation consumption. Glob. Ecol. Biogeogr. 32, 1814–1826 (2023).

    Article 

    Google Scholar
     

  • Trepel, J. et al. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat. Ecol. Evol. 8, 705–716 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fedyń, I., Przepióra, F., Sobociński, W., Wyka, J. & Ciach, M. Beyond beaver wetlands: the engineering activities of a semi-aquatic mammal mediate the species richness and abundance of terrestrial birds wintering in a temperate forest. For. Ecol. Manage. 529, 120698 (2023).

    Article 

    Google Scholar
     

  • Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).


    Google Scholar
     

  • Amsten, K. et al. Fire- and herbivory-driven consumer control in a savanna-like temperate wood-pasture: an experimental approach. J. Ecol. 109, 4103–4114 (2021).

    Article 

    Google Scholar
     

  • Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manage. 494, 119310 (2021).

    Article 

    Google Scholar
     

  • Schulze, K. A., Rosenthal, G. & Peringer, A. Intermediate foraging large herbivores maintain semi-open habitats in wilderness landscape simulations. Ecol. Model. 379, 10–21 (2018).

    Article 

    Google Scholar
     

  • Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, eabj9496 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svenning, J.-C. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 104, 133–148 (2002).

    Article 

    Google Scholar
     

  • Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinct. 2, e5 (2024).

    Article 

    Google Scholar
     

  • Haiduc, B. S., Răţoi, B. G. & Semprebon, G. M. Dietary reconstruction of Plio-Pleistocene proboscideans from the Carpathian Basin of Romania using enamel microwear. Quat. Int. 467, 222–229 (2018).

    Article 

    Google Scholar
     

  • Lemoine, R. T., Buitenwerf, R. & Svenning, J.-C. Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene 44, 100403 (2023).

    Article 

    Google Scholar
     

  • Bergman, J. et al. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat. Commun. 14, 7679 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fløjgaard, C., Pedersen, P. B. M., Sandom, C. J., Svenning, J.-C. & Ejrnæs, R. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).

    Article 

    Google Scholar
     

  • Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varga, A. et al. Changing year-round habitat use of extensively grazing cattle, sheep and pigs in East-Central Europe between 1940 and 2014: consequences for conservation and policy. Agric. Ecosyst. Environ. 234, 142–153 (2016).

    Article 

    Google Scholar
     

  • Hartel, T., Plieninger, T. & Varga, A. in Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds Kirby, K. J. & Watkins, C.) 61–76 (CABI, 2015).

  • Dengler, J. et al. Ecological Indicator Values for Europe (EIVE) 1.0. Veg. Classif. Surv. 4, 7–29 (2023).


    Google Scholar
     

  • Midolo, G. et al. Disturbance indicator values for European plants. Glob. Ecol. Biogeogr. 32, 24–34 (2023).

    Article 

    Google Scholar
     

  • Schaffers, A. P. & Sýkora, K. V. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11, 225–244 (2000).

    Article 

    Google Scholar
     

  • Emborg, J. Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For. Ecol. Manage. 106, 83–95 (1998).

    Article 

    Google Scholar
     

  • Heinken, T. et al. The European Forest Plant Species List (EuForPlant): concept and applications. J. Veg. Sci. 33, e13132 (2022).

    Article 

    Google Scholar
     

  • Dobrowolska, D., Piasecka, Ż., Kuberski, Ł. & Stereńczak, K. Canopy gap characteristics and regeneration patterns in the Białowieża forest based on remote sensing data and field measurements. For. Ecol. Manage. 511, 120123 (2022).

    Article 

    Google Scholar
     

  • Modrow, T., Kuehne, C., Saha, S., Bauhus, J. & Pyttel, P. L. Photosynthetic performance, height growth, and dominance of naturally regenerated sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings in small-scale canopy openings of varying sizes. Eur. J. For. Res. 139, 41–52 (2020).

    Article 

    Google Scholar
     

  • Seedre, M. et al. Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. For. Ecol. Manage. 455, 117676 (2020).

    Article 

    Google Scholar
     

  • Boch, S. et al. High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic Appl. Ecol. 14, 496–505 (2013).

    Article 

    Google Scholar
     

  • Plue, J. et al. Forest herb layer response to long-term light deficit along a forest developmental series. Acta Oecologica 53, 63–72 (2013).

    Article 

    Google Scholar
     

  • Bonavent, C. et al. Grazing by semi-feral cattle and horses supports plant species richness and uniqueness in grasslands. Appl. Veg. Sci. 26, e12718 (2023).

    Article 

    Google Scholar
     

  • van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).

    Article 

    Google Scholar
     

  • Müller, J., Jarzabek-Müller, A. & Bussler, H. Some of the rarest European saproxylic beetles are common in the wilderness of Northern Mongolia. J. Insect Conserv. 17, 989–1001 (2013).

    Article 

    Google Scholar
     

  • Horak, J. et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manage. 315, 80–85 (2014).

    Article 

    Google Scholar
     

  • Edwards, E. A broad-scale structural classification of vegetation for practical purposes. Bothalia 14, 705–712 (1983).

    Article 

    Google Scholar
     

  • Kelemen, K., Mihók, B., Gálhidy, L. & Standovár, T. Dynamic response of herbaceous vegetation to gap opening in a Central European beech stand. Silva Fenn. 46, 53–65 (2012).

    Article 

    Google Scholar
     

  • Popescu, S.-M. et al. Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: long pollen records and climatostratigraphy. Quat. Int. 219, 152–167 (2010).

    Article 

    Google Scholar
     

  • Costeur, L., Maridet, O., Montuire, S. & Legendre, S. Evidence of northern Turolian savanna-woodland from the Dorn-Dürkheim 1 fauna (Germany). Palaeobiodivers. Palaeoenviron. 93, 259–275 (2013).

    Article 

    Google Scholar
     

  • Adie, H. & Lawes, M. J. Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest. Biol. Rev. 98, 643–661 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Plint, T., Longstaffe, F. J., Ballantyne, A., Telka, A. & Rybczynski, N. Evolution of woodcutting behaviour in Early Pliocene beaver driven by consumption of woody plants. Sci. Rep. 10, 13111 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiarucci, A., Araújo, M. B., Decocq, G., Beierkuhnlein, C. & Fernández-Palacios, J. M. The concept of potential natural vegetation: an epitaph? J. Veg. Sci. 21, 1172–1178 (2010).

    Article 

    Google Scholar
     

  • Matuszkiewicz, J. M. Potential Natural Vegetation of Poland (Potencjalna Roślinność Naturalna Polski) (IGiPZ PAN, 2008).

  • Fischer, H. S., Michler, B. & Fischer, A. High resolution predictive modelling of potential natural vegetation under recent site conditions and future climate scenarios: case study Bavaria. Tuexenia https://doi.org/10.14471/2018.39.001 (2019).

  • Sanczuk, P. et al. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science 386, 193–198 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordén, U. Influence of broad‐leaved tree species on pH and organic matter content of forest topsoils in Scania, South Sweden. Scand. J. For. Res. 9, 1–8 (1994).

    Article 

    Google Scholar
     

  • Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotrík, M. et al. Half a century of herb layer changes in Quercus-dominated forests of the Western Carpathians. For. Ecol. Manage. 544, 121151 (2023).

    Article 

    Google Scholar
     

  • Bobiec, A., Reif, A. & Öllerer, K. Seeing the oakscape beyond the forest: a landscape approach to the oak regeneration in Europe. Landsc. Ecol. 33, 513–528 (2018).

    Article 

    Google Scholar
     

  • Staude, I. R. et al. Prioritize grassland restoration to bend the curve of biodiversity loss. Restor. Ecol. 31, e13931 (2023).

    Article 

    Google Scholar
     

  • Tölgyesi, C. et al. How to not trade water for carbon with tree planting in water-limited temperate biomes? Sci. Total Environ. 856, 158960 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Svenning, J.-C., Buitenwerf, R. & Roux, E. L. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, R.A. et al. Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. Commun. Biol. https://doi.org/10.1038/s42003-025-07882-7 (2025).

  • Doudová, J., Douda, J. & Boublík, K. Traditional human practices protect diversity of open forests threatened by ticking nutrient time bomb. Biol. Conserv. 275, 109758 (2022).

    Article 

    Google Scholar
     

  • Cholewińska, O., Adamowski, W. & Jaroszewicz, B. Homogenization of temperate mixed deciduous forests in Białowieża Forest: similar communities are becoming more similar. Forests 11, 545 (2020).

    Article 

    Google Scholar
     

  • De Schuyter, W. et al. Declining potential nectar production of the herb layer in temperate forests under global change. J. Ecol. 112, 832–847 (2024).

    Article 

    Google Scholar
     

  • Pokorný, P. et al. Managing wilderness? Holocene-scale, human-related disturbance dynamics as revealed in a remote, forested area in the Czech Republic. Holocene 32, 584–596 (2022).

    Article 

    Google Scholar
     

  • Pärtel, M., Helm, A., Reitalu, T., Liira, J. & Zobel, M. Grassland diversity related to the Late Iron Age human population density. J. Ecol. 95, 574–582 (2007).

    Article 

    Google Scholar
     

  • Holdridge, L. R. Life Zone Ecology (Tropical Science Center, 1967).

  • Buttler, K. P., May, R. & Metzing, D. Liste der Gefäßpflanzen Deutschlands—Florensynopse und Synonyme (Bundesamt für Naturschutz, 2018).

  • Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. Vascular Plants of Poland: An Annotated Checklist (W. Szafer Institute of Botany, Polish Academy of Sciences, 2020).

  • Creuwels, J. & Pieterse, S. Checklist Dutch Species Register—Nederlands Soortenregister (GBIF.org, 2023); https://doi.org/10.15468/rjdpzy

  • Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenberg-type indicator values for the Czech flora. Preslia 90, 83–103 (2018).

    Article 

    Google Scholar
     

  • Kaźmierczakowa, R. et al. Polska Czerwona Lista Paprotników i Roślin Kwiatowych (Instytut Ochrony Przyrody Polskiej Akademii Nauk, 2016).

  • Metzing, D. et al. in Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 7: Pflanzen (eds Metzing, D. et al.) 13–358 (Landwirtschaftsverlag, 2018).

  • IUCN Species Survival Commission IUCN Red List Categories and Criteria v.3.1, 2nd edn (IUCN, 2012).

  • Zhang, J. & Qian, H. U. Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1–5 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Govaerts, R. World Checklist of Vascular Plants (WCVP) v.12 (Royal Botanic Gardens, Kew, 2023); https://doi.org/10.34885/jdh2-dr22

  • R Core Team. R: a language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2023).

  • Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article 

    Google Scholar
     

  • Chang, J. et al. Modeled changes in potential grassland productivity and in grass-fed ruminant livestock density in Europe over 1961–2010. PLoS ONE 10, e0127554 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Axmanová, I. et al. The species richness–productivity relationship in the herb layer of European deciduous forests. Glob. Ecol. Biogeogr. 21, 657–667 (2012).

    Article 

    Google Scholar
     

  • Pick, J. L., Nakagawa, S. & Noble, D. W. A. Reproducible, flexible and high-throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2018).

    Article 

    Google Scholar
     

  • Axmanová, I. et al. Estimation of herbaceous biomass from species composition and cover. Appl. Veg. Sci. 15, 580–589 (2012).

    Article 

    Google Scholar
     

  • Rozbrojová, Z. & Hájek, M. Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. J. Veg. Sci. 19, 613–620 (2008).

    Article 

    Google Scholar
     

  • Faurby, S. et al. PHYLACINE 1.2: the Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • de Bello, F. et al. Handbook of Trait-Based Ecology: From Theory to R Tools (Cambridge Univ. Press, 2021).

  • Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package 1.9.0 (2023).

  • Ripley, B. et al. MASS: Support functions and datasets for Venables and Ripley’s MASS. R package 7.3.60 (2024).

  • Czyżewski, S. & Svenning, J.-C. Temperate forest plants are associated with heterogenous semi-open canopy conditions shaped by large herbivores. figshare https://doi.org/10.6084/m9.figshare.27249384.v1 (2025).



  • Source link

    More From Forest Beat

    Airborne imaging spectroscopy surveys of Arctic and boreal Alaska and northwestern...

    Miller, C. E. et al. The ABoVE L-band and P-band airborne synthetic aperture radar surveys, Earth Syst. Sci. Data 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024 (2024).Article  ...
    Biodiversity
    8
    minutes

    Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor...

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article  ADS  CAS  ...
    Biodiversity
    11
    minutes

    Species responses to weather anomalies depend on local adaptation and range...

    Degree of local adaptationWe used count data from 34 butterfly species whose populations have been previously seen to show a clear response to...
    Biodiversity
    11
    minutes

    Ambitious changes to Canadian conservation law are needed to reverse the...

    Canada’s biodiversity is in decline. Globally, climate change, urbanization, overexploitation of resources and habitat loss are combining to drive...
    Biodiversity
    4
    minutes
    spot_imgspot_img