Staude, I. R. et al. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat. Ecol. Evol. 4, 802–808 (2020).
Hédl, R., Kopecký, M. & Komárek, J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers. Distrib. 16, 267–276 (2010).
Vojík, M. & Boublík, K. Fear of the dark: decline in plant diversity and invasion of alien species due to increased tree canopy density and eutrophication in lowland woodlands. Plant Ecol. 219, 749–758 (2018).
Auffret, A. G. & Svenning, J.-C. Climate warming has compounded plant responses to habitat conversion in northern Europe. Nat. Commun. 13, 7818 (2022).
Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
Valente, L. M., Savolainen, V. & Vargas, P. Unparalleled rates of species diversification in Europe. Proc. R. Soc. B 277, 1489–1496 (2010).
Nürk, N. M., Uribe-Convers, S., Gehrke, B., Tank, D. C. & Blattner, F. R. Oligocene niche shift, Miocene diversification—cold tolerance and accelerated speciation rates in the St. John’s worts (Hypericum, Hypericaceae). BMC Evol. Biol. 15, 80 (2015).
Balao, F. et al. Early diversification and permeable species boundaries in the Mediterranean firs. Ann. Bot. 125, 495–507 (2020).
Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. R. Soc. Lond. B 268, 2383–2389 (2001).
Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol. 237, 392–407 (2023).
Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847–850 (2000).
Fine, P. V. A. & Ree, R. H. Evidence for a time‐integrated species–area effect on the latitudinal gradient in tree diversity. Am. Nat. 168, 796–804 (2006).
Jiménez-Alfaro, B. et al. Post-glacial determinants of regional species pools in alpine grasslands. Glob. Ecol. Biogeogr. 30, 1101–1115 (2021).
Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).
Alberdi, I. et al. The conservation status assessment of Natura 2000 forest habitats in Europe: capabilities, potentials and challenges of national forest inventories data. Ann. For. Sci. 76, 34 (2019).
Langridge, J. et al. Biodiversity responses to forest management abandonment in boreal and temperate forest ecosystems: a meta-analysis reveals an interactive effect of time since abandonment and climate. Biol. Conserv. 287, 110296 (2023).
Vild, O. et al. Long-term shift towards shady and nutrient-rich habitats in Central European temperate forests. New Phytol. 242, 1018–1028 (2024).
Lelli, C. et al. Long-term changes in Italian mountain forests detected by resurvey of historical vegetation data. J. Veg. Sci. 32, e12939 (2021).
Pringle, R. M. et al. Impacts of large herbivores on terrestrial ecosystems. Curr. Biol. 33, R584–R610 (2023).
Vera, F. W. M. Grazing Ecology and Forest History (CABI, 2000).
Pearce, E. A. et al. Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Sci. Adv. 9, eadi9135 (2023).
Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J.-C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).
Breckle, S.-W. Walter’s Vegetation of the Earth (Springer, 2002).
Clements, F. E. Plant Succession: An Analysis of the Development of Vegetation (Carnegie Institution of Washington, 1916).
Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).
Petritan, A. M., Nuske, R. S., Petritan, I. C. & Tudose, N. C. Gap disturbance patterns in an old-growth sessile oak (Quercus petraea L.)–European beech (Fagus sylvatica L.) forest remnant in the Carpathian Mountains, Romania. For. Ecol. Manage. 308, 67–75 (2013).
Poorter, L. et al. Successional theories. Biol. Rev. 98, 2049–2077 (2023).
Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near-natural temperate deciduous forest in Denmark. For. Ecol. Manage. 126, 173–189 (2000).
Wang, L. et al. Tree cover and its heterogeneity in natural ecosystems is linked to large herbivore biomass globally. One Earth 6, 1759–1770 (2023).
Ejrnæs, D. D. et al. Vegetation dynamics following three decades of trophic rewilding in the mesic grasslands of Oostvaardersplassen. Appl. Veg. Sci. 27, e12805 (2024).
Pedersen, R. Ø., Faurby, S. & Svenning, J.-C. Late-Quaternary megafauna extinctions have strongly reduced mammalian vegetation consumption. Glob. Ecol. Biogeogr. 32, 1814–1826 (2023).
Trepel, J. et al. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat. Ecol. Evol. 8, 705–716 (2024).
Fedyń, I., Przepióra, F., Sobociński, W., Wyka, J. & Ciach, M. Beyond beaver wetlands: the engineering activities of a semi-aquatic mammal mediate the species richness and abundance of terrestrial birds wintering in a temperate forest. For. Ecol. Manage. 529, 120698 (2023).
Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).
Amsten, K. et al. Fire- and herbivory-driven consumer control in a savanna-like temperate wood-pasture: an experimental approach. J. Ecol. 109, 4103–4114 (2021).
Kowalczyk, R., Kamiński, T. & Borowik, T. Do large herbivores maintain open habitats in temperate forests? For. Ecol. Manage. 494, 119310 (2021).
Schulze, K. A., Rosenthal, G. & Peringer, A. Intermediate foraging large herbivores maintain semi-open habitats in wilderness landscape simulations. Ecol. Model. 379, 10–21 (2018).
Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, eabj9496 (2022).
Svenning, J.-C. A review of natural vegetation openness in north-western Europe. Biol. Conserv. 104, 133–148 (2002).
Svenning, J.-C. et al. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Camb. Prisms Extinct. 2, e5 (2024).
Haiduc, B. S., Răţoi, B. G. & Semprebon, G. M. Dietary reconstruction of Plio-Pleistocene proboscideans from the Carpathian Basin of Romania using enamel microwear. Quat. Int. 467, 222–229 (2018).
Lemoine, R. T., Buitenwerf, R. & Svenning, J.-C. Megafauna extinctions in the late-Quaternary are linked to human range expansion, not climate change. Anthropocene 44, 100403 (2023).
Bergman, J. et al. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat. Commun. 14, 7679 (2023).
Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).
Fløjgaard, C., Pedersen, P. B. M., Sandom, C. J., Svenning, J.-C. & Ejrnæs, R. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).
Segar, J. et al. Divergent roles of herbivory in eutrophying forests. Nat. Commun. 13, 7837 (2022).
Varga, A. et al. Changing year-round habitat use of extensively grazing cattle, sheep and pigs in East-Central Europe between 1940 and 2014: consequences for conservation and policy. Agric. Ecosyst. Environ. 234, 142–153 (2016).
Hartel, T., Plieninger, T. & Varga, A. in Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds Kirby, K. J. & Watkins, C.) 61–76 (CABI, 2015).
Dengler, J. et al. Ecological Indicator Values for Europe (EIVE) 1.0. Veg. Classif. Surv. 4, 7–29 (2023).
Midolo, G. et al. Disturbance indicator values for European plants. Glob. Ecol. Biogeogr. 32, 24–34 (2023).
Schaffers, A. P. & Sýkora, K. V. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11, 225–244 (2000).
Emborg, J. Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. For. Ecol. Manage. 106, 83–95 (1998).
Heinken, T. et al. The European Forest Plant Species List (EuForPlant): concept and applications. J. Veg. Sci. 33, e13132 (2022).
Dobrowolska, D., Piasecka, Ż., Kuberski, Ł. & Stereńczak, K. Canopy gap characteristics and regeneration patterns in the Białowieża forest based on remote sensing data and field measurements. For. Ecol. Manage. 511, 120123 (2022).
Modrow, T., Kuehne, C., Saha, S., Bauhus, J. & Pyttel, P. L. Photosynthetic performance, height growth, and dominance of naturally regenerated sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings in small-scale canopy openings of varying sizes. Eur. J. For. Res. 139, 41–52 (2020).
Seedre, M. et al. Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. For. Ecol. Manage. 455, 117676 (2020).
Boch, S. et al. High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic Appl. Ecol. 14, 496–505 (2013).
Plue, J. et al. Forest herb layer response to long-term light deficit along a forest developmental series. Acta Oecologica 53, 63–72 (2013).
Bonavent, C. et al. Grazing by semi-feral cattle and horses supports plant species richness and uniqueness in grasslands. Appl. Veg. Sci. 26, e12718 (2023).
van Swaay, C., Warren, M. & Loïs, G. Biotope use and trends of European butterflies. J. Insect Conserv. 10, 189–209 (2006).
Müller, J., Jarzabek-Müller, A. & Bussler, H. Some of the rarest European saproxylic beetles are common in the wilderness of Northern Mongolia. J. Insect Conserv. 17, 989–1001 (2013).
Horak, J. et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manage. 315, 80–85 (2014).
Edwards, E. A broad-scale structural classification of vegetation for practical purposes. Bothalia 14, 705–712 (1983).
Kelemen, K., Mihók, B., Gálhidy, L. & Standovár, T. Dynamic response of herbaceous vegetation to gap opening in a Central European beech stand. Silva Fenn. 46, 53–65 (2012).
Popescu, S.-M. et al. Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: long pollen records and climatostratigraphy. Quat. Int. 219, 152–167 (2010).
Costeur, L., Maridet, O., Montuire, S. & Legendre, S. Evidence of northern Turolian savanna-woodland from the Dorn-Dürkheim 1 fauna (Germany). Palaeobiodivers. Palaeoenviron. 93, 259–275 (2013).
Adie, H. & Lawes, M. J. Solutions to fire and shade: resprouting, growing tall and the origin of Eurasian temperate broadleaved forest. Biol. Rev. 98, 643–661 (2022).
Plint, T., Longstaffe, F. J., Ballantyne, A., Telka, A. & Rybczynski, N. Evolution of woodcutting behaviour in Early Pliocene beaver driven by consumption of woody plants. Sci. Rep. 10, 13111 (2020).
Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).
Lundgren, E. J. et al. Functional traits—not nativeness—shape the effects of large mammalian herbivores on plant communities. Science 383, 531–537 (2024).
Chiarucci, A., Araújo, M. B., Decocq, G., Beierkuhnlein, C. & Fernández-Palacios, J. M. The concept of potential natural vegetation: an epitaph? J. Veg. Sci. 21, 1172–1178 (2010).
Matuszkiewicz, J. M. Potential Natural Vegetation of Poland (Potencjalna Roślinność Naturalna Polski) (IGiPZ PAN, 2008).
Fischer, H. S., Michler, B. & Fischer, A. High resolution predictive modelling of potential natural vegetation under recent site conditions and future climate scenarios: case study Bavaria. Tuexenia https://doi.org/10.14471/2018.39.001 (2019).
Sanczuk, P. et al. Unexpected westward range shifts in European forest plants link to nitrogen deposition. Science 386, 193–198 (2024).
Nordén, U. Influence of broad‐leaved tree species on pH and organic matter content of forest topsoils in Scania, South Sweden. Scand. J. For. Res. 9, 1–8 (1994).
Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945 (2010).
Kotrík, M. et al. Half a century of herb layer changes in Quercus-dominated forests of the Western Carpathians. For. Ecol. Manage. 544, 121151 (2023).
Bobiec, A., Reif, A. & Öllerer, K. Seeing the oakscape beyond the forest: a landscape approach to the oak regeneration in Europe. Landsc. Ecol. 33, 513–528 (2018).
Staude, I. R. et al. Prioritize grassland restoration to bend the curve of biodiversity loss. Restor. Ecol. 31, e13931 (2023).
Tölgyesi, C. et al. How to not trade water for carbon with tree planting in water-limited temperate biomes? Sci. Total Environ. 856, 158960 (2023).
Svenning, J.-C., Buitenwerf, R. & Roux, E. L. Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Curr. Biol. 34, R435–R451 (2024).
Nelson, R.A. et al. Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. Commun. Biol. https://doi.org/10.1038/s42003-025-07882-7 (2025).
Doudová, J., Douda, J. & Boublík, K. Traditional human practices protect diversity of open forests threatened by ticking nutrient time bomb. Biol. Conserv. 275, 109758 (2022).
Cholewińska, O., Adamowski, W. & Jaroszewicz, B. Homogenization of temperate mixed deciduous forests in Białowieża Forest: similar communities are becoming more similar. Forests 11, 545 (2020).
De Schuyter, W. et al. Declining potential nectar production of the herb layer in temperate forests under global change. J. Ecol. 112, 832–847 (2024).
Pokorný, P. et al. Managing wilderness? Holocene-scale, human-related disturbance dynamics as revealed in a remote, forested area in the Czech Republic. Holocene 32, 584–596 (2022).
Pärtel, M., Helm, A., Reitalu, T., Liira, J. & Zobel, M. Grassland diversity related to the Late Iron Age human population density. J. Ecol. 95, 574–582 (2007).
Holdridge, L. R. Life Zone Ecology (Tropical Science Center, 1967).
Buttler, K. P., May, R. & Metzing, D. Liste der Gefäßpflanzen Deutschlands—Florensynopse und Synonyme (Bundesamt für Naturschutz, 2018).
Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. Vascular Plants of Poland: An Annotated Checklist (W. Szafer Institute of Botany, Polish Academy of Sciences, 2020).
Creuwels, J. & Pieterse, S. Checklist Dutch Species Register—Nederlands Soortenregister (GBIF.org, 2023); https://doi.org/10.15468/rjdpzy
Chytrý, M., Tichý, L., Dřevojan, P., Sádlo, J. & Zelený, D. Ellenberg-type indicator values for the Czech flora. Preslia 90, 83–103 (2018).
Kaźmierczakowa, R. et al. Polska Czerwona Lista Paprotników i Roślin Kwiatowych (Instytut Ochrony Przyrody Polskiej Akademii Nauk, 2016).
Metzing, D. et al. in Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 7: Pflanzen (eds Metzing, D. et al.) 13–358 (Landwirtschaftsverlag, 2018).
IUCN Species Survival Commission IUCN Red List Categories and Criteria v.3.1, 2nd edn (IUCN, 2012).
Zhang, J. & Qian, H. U. Taxonstand: an R package for standardizing scientific names of plants and animals. Plant Divers. 45, 1–5 (2023).
Govaerts, R. World Checklist of Vascular Plants (WCVP) v.12 (Royal Botanic Gardens, Kew, 2023); https://doi.org/10.34885/jdh2-dr22
R Core Team. R: a language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2023).
Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).
Chang, J. et al. Modeled changes in potential grassland productivity and in grass-fed ruminant livestock density in Europe over 1961–2010. PLoS ONE 10, e0127554 (2015).
Axmanová, I. et al. The species richness–productivity relationship in the herb layer of European deciduous forests. Glob. Ecol. Biogeogr. 21, 657–667 (2012).
Pick, J. L., Nakagawa, S. & Noble, D. W. A. Reproducible, flexible and high-throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2018).
Axmanová, I. et al. Estimation of herbaceous biomass from species composition and cover. Appl. Veg. Sci. 15, 580–589 (2012).
Rozbrojová, Z. & Hájek, M. Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. J. Veg. Sci. 19, 613–620 (2008).
Faurby, S. et al. PHYLACINE 1.2: the Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626 (2018).
de Bello, F. et al. Handbook of Trait-Based Ecology: From Theory to R Tools (Cambridge Univ. Press, 2021).
Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package 1.9.0 (2023).
Ripley, B. et al. MASS: Support functions and datasets for Venables and Ripley’s MASS. R package 7.3.60 (2024).
Czyżewski, S. & Svenning, J.-C. Temperate forest plants are associated with heterogenous semi-open canopy conditions shaped by large herbivores. figshare https://doi.org/10.6084/m9.figshare.27249384.v1 (2025).